K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

Chỗ cuối kia phải là +2 chứ bạn ??!

7 tháng 4 2017

me nghĩ đề sai

=> đề sai ,thử thay x=1/3;y=1=> P<0

25 tháng 7 2019

\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)

\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)

\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)

\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)

\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)

25 tháng 7 2019

Cách khác câu e:

\(x^2-xy+y^2=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0\forall xy\) (đpcm)

25 tháng 7 2019

a) 

Đặt \(A=9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x+1+1\)

\(=\left(3x+1\right)^2+1\)

Ta có: \(\left(3x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(3x+1\right)^2+1\ge0+1;\forall x\)

Hay \(A\ge1>0;\forall x\)

Các phần khác tương tự cứ việc biến đổi thành hằng đẳng thức

25 tháng 7 2019

\(a,9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x.1+1^2+1\)

\(=\left(3x-1\right)^2+1\)

\(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)

\(\Rightarrow9x^2-6x+2>0\forall x\)

\(b,x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

\(\Rightarrow x^2+x+1>0\forall x\)

27 tháng 9 2021

Chứng minh gì á bạn?

27 tháng 9 2021

CM như kiểu là bé hoặc lớn hơn 0 vs mọi x,y á bạn thầy cô mk ghi đề vậy thì mk viết vậy thôi ạ

a: Ta có: \(x^2-8x+20\)

\(=x^2-8x+16+4\)

\(=\left(x-4\right)^2+4>0\forall x\)

b: Ta có: \(-x^2+6x-19\)

\(=-\left(x^2-6x+19\right)\)

\(=-\left(x^2-6x+9+10\right)\)

\(=-\left(x-3\right)^2-10< 0\forall x\)

13 tháng 8 2016

bai2 :cmr

a, a^3+b^3=(a+b)^3-3ab.(a+b)

VP= \(\left(a+b\right)^3-3ab\left(a+b\right)\)

=\(a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\)

=VT

b.a^3-b^3=(a-b)^3+3ab,(a-b)

\(VP=\left(a-b\right)^3+3ab\left(a-b\right)\)

=\(a^3-3a^2b+ab^2.3-b^3+3a^2b-3ab^2=a^3-b^3\)

=VT

=> ĐPCM

 

13 tháng 8 2016

bài 1.

a) = 8x^3+4x^2y+2xy^2-4x^2y-2xy^2-y^3-(8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3)

= 8x3+4x2y+2xy2-4x2y-2xy2-y- 8x3+4x2y-2xy2-4x2y+2xy2-y3

=-8x2y-6y3

b) = 27x3-18x2y+12xy2+18x2y-12xy2+8y3-27x3

=8y

a: 2x^2y-50xy=2xy(x-25)

b: 5x^2-10x=5x(x-2)

c: 5x^3-5x=5x(x^2-1)=5x(x-1)(x+1)

d: \(x^2-xy+x=x\left(x-y+1\right)\)

e: x(x-y)-2(y-x)

=x(x-y)+2(x-y)

=(x-y)(x+2)

f: 4x^2-4xy-8y^2

=4(x^2-xy-2y^2)

=4(x^2-2xy+xy-2y^2)

=4[x(x-2y)+y(x-2y)]

=4(x-2y)(x+y)

f1: x^2ỹ-y^2+y

=(x-y)(x+y)+(x+y)

=(x+y)(x-y+1)

17 tháng 11 2018

\(\left(x-1\right)^2-25\)

\(=x^2-2x+1-25\)

\(=x^2-2x-24\)

\(=x^2-6x+4x-24\)

\(=x.\left(x-6\right)+4.\left(x-6\right)\)

\(=\left(x+4\right).\left(x-6\right)\)

17 tháng 11 2018

a, \(1-2y+y^2=\left(y+1\right)^2=\left(y+1\right)\left(y+1\right)\)

b, \(\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)

c, \(1-4x^2=1^2-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)

d,  \(8-27x^3=2^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)