K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

a) bài này xét chữ số tận cùng nhé

\(12^{2000}-2^{1000}=\left(2^2\right)^{1000}-\left(2^2\right)^{500}=4^{1000}-4^{500}=\left(...6\right)-\left(...6\right)=\left(...0\right)\) chia hết cho 10 

=>122000-21000 chia hết cho 10 (đpcm)

b) chưa nghĩ ra :(

19 tháng 7 2016

uk=)!!!

NV
26 tháng 7 2021

a. Đề bài sai, với \(n=1;2;3...\) thì đều sai hết

b. Đề bài sai, với \(n=0;2;4...\) thì vẫn sai hết

26 tháng 7 2021

e viết nhầm đề

a) n4-10n3+35n2-50n+72 chia hết cho 24 với n nguyên

b) n4+4n3-8n2-16n+768 chia hết cho 384 với n chẵn

b: \(2^{70}+3^{70}=4^{35}+9^{35}=\left(4+9\right)\cdot A⋮13\)

25 tháng 6 2023
  Lê Ngọc Phát @ldtv.cskh.phatln Livechat Agent 14:40

Ta có thể viết lại A và B dưới dạng:

 

A = 29!

 

B = (58!/29!) / 30

 

Ta sẽ chứng minh rằng A + B chia hết cho 59 bằng cách chứng minh rằng A ≡ -B (mod 59).

 

Đầu tiên, ta áp dụng định lý Wilson: (p-1)! ≡ -1 (mod p) nếu p là số nguyên tố. Áp dụng định lý này với p = 59, ta có:

 

58! ≡ -1 (mod 59)

 

Ta nhân cả hai vế của phương trình trên với 29!, ta được:

 

29!(58!) ≡ -29! (mod 59)

 

Nhưng ta biết rằng 29! ≡ A (mod 59) và (58!/29!) ≡ B (mod 59), do đó ta có:

 

A * B ≡ -A (mod 59)

 

Thêm A vào cả hai vế của phương trình, ta được:

 

A + A * B ≡ 0 (mod 59)

 

Nhưng ta biết rằng A + B = 29! + (58!/29!) / 30, do đó:

 

A + B ≡ A + A * B (mod 59)

 

Vậy ta kết luận được rằng A + B chia hết cho 59.

8 tháng 10 2017

bài này làm thế nào 

hiền k hộ ta

5 tháng 7 2016

A=3(3+1)+3^2(3+1)+.....+3^59(3+1)                                                                                                                                                  =4(3+3^2+.....+3^59) CHIA HẾT CHO 4

                 

5 tháng 7 2016

\(P=a^5b-ab^5=ab\left(a^4-b^4\right)=ab\left(a^2-b^2\right)\left(a^2+b^2\right)=ab\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)

  • Nếu a hoặc b chẵn => P chẵn; Nếu cả a;b lẻ thì a - b chẵn => P chẵn => P chia hết cho 2 với mọi a;b
  • Nếu a hoặc b chia hết cho 3 => P chia hết cho 3. Nếu cả a;b chia cho 3 cùng số dư thì a - b chia hết cho 3 => P chia hết cho 3. Nếu a;b chia 3 khác số dư, tức là dư là 1 và 2 thì tổng a+b chia hết cho 3. Do đó, P chia hết cho 3 với mọi a;b
  • Viết lại \(P=ab\left(a^4-b^4\right)=ab\left(a^4-1-\left(b^4-1\right)\right)\). Dùng hệ quả 1 của định lý Fermat nhỏ : với mọi số nguyên tố p thì Xp-1 - 1 chia hết cho p với mọi X nguyên. Ta cũng suy ra được a4 - 1 và b4 - 1 đều chia hết cho 5 nên P chia hết cho 5.

P chia hết cho 2; 3; 5 nên P chia hết cho 2*3*5 = 30. ĐPCM