K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\\ =n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\\ =\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặy n2+3n=t

Ta có : \(A=t\left(t+2\right)+1\\ =t^2+2t+1\\ =\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

là 1 số chính phương

21 tháng 3 2017

\(A=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(A=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

Đặt \(n^2+3n=a.\)

\(A=a\left(a+2\right)\)

\(A=a^2+2a\)

\(A+1=a^2+2a+1\)

\(A+1=\left(a+1\right)^2\)- là số chính phương -> ĐPCM.

3 tháng 11 2016

n(n + 1)(n + 2)(n + 3) + 1

= [n(n + 3)].[(n + 1)(n + 2)] + 1

= (n2 + 3n).(n2 + 3n + 2) + 1 (1)

Đặt t = n2 + 3n + 1

(1) trở thành (t - 1).(t + 1) + 1

= t2 - 1 + 1

= t2 = (n2 + 3n + 1)2 là số chính phương (đpcm)

 

 

5 tháng 11 2016

chắc chắn chị băt chước trên mạng nà đúng ko

28 tháng 1 2021

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

3 tháng 6 2022

ko tận cùng là 2;3;7;8
ko tận cùng là 1 vì 11 chia 4 dư 3
ko tận cùng là 5 vì chia 55 chia 4 dư 3
ko tận cùng là 6 vì 66 chia 4 dư 2
ko tận cùng là 9 vì 99 chia 4 dư 3
vậy số có dạng là a000,a444
với số có dạng là a000 thì a chỉ có thể là 1;3;4;6;7;9
với số có dạng là a444 thì a chỉ có thể là 1;3;4;6;7;9
thử đi, có 6TH thôi=))

3 tháng 6 2022

2. a và b đồng dư 0;1 mod 4
nên a-b đồng dư 0;1;3 mod 4
mà 2014 đồng dư 2 mod 4
nên ko tồn tại a;b