Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Bạn tự tính được. Tự làm nha.
b, Gọi ƯCLN(12n+1; 30n+1) là d. Ta có:
12n+1 chia hết cho d => 60n+5 chia hết cho d
30n+1 chia hết cho d => 60n+2 chia hết cho d
=> 60n+5-(60n+2) chia hết cho d
=> 3 chia hết cho d
=> d thuộc ước của 3
Vì 12 chia hết cho 3=> 12n chia hết cho d=> 12n+1 chia 3 dư 1=> 12n+1 không chia hết cho 3
=> d khác 3
=> d=1
=> ƯCLN(12n+1; 30n+1) = 1
=>\(\frac{12n+1}{30n+1}\)là phân số tối giản (đpcm)
th1 n=2\(A=\frac{12.2+1}{30.2+1}=\frac{25}{61}\)
th2 n=5 \(A=\frac{12.5+1}{30.5+1}=\frac{61}{151}\)
Gọi ƯCLN(12n+1,30n+1) là d đk d thuộc N*
ta có vì 12n+1 chia hết cho d suy ra 60n+5 chia hết cho d
30n+1 chia hết cho d suy ra 60n+2 chia hết cho d
suy ra 60n+5-(60n+2) chia hết cho d
3 chia hết cho d
d thuộc ước của 3
Ư(3)={1;3}
ta có vì 60n+5 ko thể chia hết cho 3
60n+2 ko chia hết cho 3
suy ra d=1
Vì ƯCLN(12n+1,30n+1)=1 suy ra đây là hai số nguyên tố cùng nhau và A là tối giản
Hướng dẫn: Đặt (tử, mẫu)=d
Phương pháp: Tìm được d = 1.
Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n.
Cuối cùng sẽ tìm được 1 là bội của b => d=1
Còn lại cậu tự làm nhé!
Bài 2:
a)Gọi UCLN(14n+3;21n+4) là d
Ta có:
[3(14n+3)]-[2(21n+4)] chia hết d
=>[42n+9]-[42n+8] chia hết d
=>1 chia hết d
=>d=1. Suy ra 14n+3 và 21n+4 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
b)Gọi UCLN(12n+1;30n+2) là d
Ta có:
[5(12n+1)]-[2(30n+2)] chia hết d
=>[60n+5]-[60n+4] chia hết d
=>1 chia hết d. Suy ra 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
c)Gọi UCLN(3n-2;4n-3) là d
Ta có:
[4(3n-2)]-[3(4n-3)] chia hết d
=>[12n-8]-[12n-9] chia hết d
=>1 chia hết d. Suy ra 3n-2 và 4n-3 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
d)Gọi UCLN(4n+1;6n+1) là d
Ta có:
[3(4n+1)]-[2(6n+1)] chia hết d
=>[12n+3]-[12n+2] chia hết d
=>1 chia hết d. Suy ra 4n+1 và 6n+1 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
a, Đặt d là ƯCLN( 12n+1 ; 30n+2 )
Ta có : \(\left(12n+1\right)⋮d\) \(\Rightarrow5\left(12n+1\right)⋮d\)
\(\left(30n+2\right)⋮d\) \(2\left(30n+2\right)⋮d\)
\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
\(\Rightarrow12n+1;30n+2\) là hai số nguyên tố cùng nhau
Vậy phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản.