K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2020

Ta có : 3636 - 910 = (4.9)36 - 910 = 436 . 936 - 910 = 910(436 . 926 -1) \(⋮\)9   (1)

            3636 có chữ số tận cùng là 6 và 910 có chữ số tận cùng là 1 (vì số mũ là số lẻ)

            => 3636 - 910 có chữ số tận cùng là 5   

            => 3636 - 910 \(⋮\)5    (2)

Từ (1) và (2) suy ra : 3636 - 910 \(⋮\)5;9      (3)

Mà 5 và 9 là hai số nguyên tố cùng nhau   (4)

Từ (3) và (4) suy ra : 3636 - 910 \(⋮\)45 

Vậy 3636 - 910 \(⋮\)45 (điều cần phải chứng minh)

16 tháng 8 2017
a) Muốn CM cxhia hết cho 45 thì phải CM chia hết cho 9 và 5 Ta có 36 chia hết cho 9 => 36^36 chia hết cho 9 9 chia hết cho 9 => 9^10 chia hết cho 9 (1) Lại có 36^36 có tận cùng là 6, 9^10 có tân cùng là 1 => 36^36-9^10 có tậ cùng là 5=> chia hét cho 5 (2) Từ (1) và (2) suy ra 36^36-9^10 chia hết cho 45 Còn câu b đợi mk tí
16 tháng 8 2017

Ta có 71000=(74)250=(...1)250=(...1)

         31000=(34)250=(...1)250=(...1)

         =>71000-31000=(...1)-(...1)=(...0)=>chia hết cho 10=> điều phải cm

Chúc bn học tốt!!

#Zon_của_Dôn      

7 tháng 4 2018

Ta có :

\(36^{36}-9^{10}⋮9\)vì các số hạng đều chia hết cho 9

Mặt khác : \(36^{36}\)có tận cùng là 6

\(9^{10}=(9^2)^5=81^5\)có tận cùng là 1

\(\Rightarrow36^{36}-9^{10}\)có tận cùng 6 - 1 = 5

\(\Rightarrow36^{36}-9^{10}\)chia hết cho 5

Mà  \((5;9)=1\)

\(\Rightarrow36^{36}-9^{10}\)chia hết cho 45

7 tháng 4 2018

ta có: 36 chia hết 9 \(\Rightarrow\)3636 chia hết 9 *

ta có 9 chia hết 9 \(\Rightarrow\)910 chia hết 9 **

từ * và ** \(\Rightarrow\) 3636-910 chia hết 9 (1)

ta có: 36 chữ số cuối = 6 suy ra 3636 có số cuối =6

910 là mũ chãn suy ra 910 số cuối =1

\(\Rightarrow\) 3636-910 có số cuối =6-1=5(2)

từ (1) và (2)

ta có 3636-910  chia hết 5 ,9                                WCLN(5,9)=1

suy ra 3636-910 chia hết 45

20 tháng 8 2018

a)

\(7^6+7^5-7^4\)

\(=7^4\cdot\left(7^2+7-1\right)\)

\(=7^4\cdot55⋮55\left(đpcm\right)\)

Mấy câu kia tương tự, dài quá 

16 tháng 7 2016

Ta có:

\(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)=3^{2014}.11\) chia hết cho 11

Vậy 32016+32015-32014 chia hết cho 11 (đpcm)

--------------------------

Ta có:

  • \(36^{36}-9^{10}=4^{36}.9^{36}-9^{10}=9^{10}\left(4^{36}.9^{26}-1\right)=\) chia hết cho 9 (1)
  • \(36^{36}-9^{10}=\left(...6\right)-\left(...1\right)=\left(...5\right)\) chia hết cho 5 (2) 

Vì 3636 có tận cùng là 6, 910 có tận cùng là 1 => 3636-910 có tận cùng là 5 [ phần này mình chỉ nói thêm thôi nhé ]

Từ (1),(2) và (5;9)=1 =>3636-910 chia hết cho 5.9=45 (đpcm)

16 tháng 7 2016

9. \(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)\)

                                      \(=3^{2014}.11⋮11\)

Vậy \(3^{2016}+3^{2015}-3^{2014}\) chia hết cho 11

16 tháng 7 2016

Mình chỉ làm được cái thứ 2 thôi..thông cảm nhé:

 36^36 - 9^10 chia hết cho 9 (1) (vì 36^36 và 9^10 đều chia hết cho 9) 
36^36 tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6) 
9^10 tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1) 
---> 36^36 - 9^10 tận cùng là 5 và do đó nó chia hết cho 5 (2) 
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) ---> 36^36 - 9^10 chia hết cho 45.

16 tháng 7 2016

               9)  Ta có :

                  32016 + 32015 - 32014 = 32014 . (32 + 3 - 1) = 32014 . (9 + 3 - 1) = 32014 . 11 chia hết cho 11 (ĐPCM)

             Tớ chỉ làm đc phần 9 thui ^_^

25 tháng 12 2017

Đặt \(A=36^{36}-9^{10}\)

\(\left\{{}\begin{matrix}36^{36}⋮9\\9^{10}⋮9\end{matrix}\right.\Rightarrow A=36^{36}-9^{10}⋮9\)

\(36\equiv1\left(mod5\right)\\ \Rightarrow36^{36}\equiv1\left(mod5\right)\\ 9\equiv-1\left(mod5\right)\\ \Rightarrow9^{10}\equiv1\left(mod5\right)\\ \Rightarrow A=36^{36}-9^{10}\equiv0\left(mod5\right)\\ \Rightarrow A⋮5\)

(5;9)=1 => A chia hết 45

9 tháng 4 2016

Vì 45=9x5

=>36^36-9^10 chia hết cho 9 (1)(vì 36^36 và 9^10 đều chia hết cho9) 

36^36 tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6) 
9^10 tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1) 
=> 36^36 - 9^10 tận cùng là 5 và do đó nó chia hết cho 5 (2) 
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) => 36^36 - 9^10 chia hết cho 45.

9 tháng 4 2016

https://coccoc.com/search/math#query=(36%5E36-9%5E10)%2F45

25 tháng 3 2017

Ta có : \(36^{36}=\left(4.9\right)^{36}=4^{36}.9^{36}⋮9\)(1)

\(9^{10}⋮9\)(2)

Từ (1); (2) => \(36^{36}-9^{10}⋮9\) (3)

Ta có : \(36^{36}=\left(6^2\right)^{36}=6^{72}=\overline{.....6}\)

\(9^{10}=\overline{......1}\)

\(\Rightarrow36^{36}-9^{10}=\overline{......6}-\overline{......1}=\overline{......5}⋮5\) (4)

Từ (3) ; (4) \(\Rightarrow36^{36}-9^{10}⋮5;9\) Mà \(\left(5;9\right)=1\) \(\Rightarrow36^{36}-9^{10}⋮45\) (đpcm)