Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\ge0\)
Ta có: \(\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+6\right)=168x\)
\(\Leftrightarrow\left(x+6\right)^2+12\sqrt{x}\left(x+6\right)-133=0\)
\(\Leftrightarrow\left(x+6\right)^2+19\sqrt{x}\left(x+6\right)-7\sqrt{x}\left(x+6\right)-133=0\)
\(\Leftrightarrow\left(x+6\right)\left(x+19\sqrt{x}+6\right)-7\sqrt{x}\left(x+19\sqrt{x}+6\right)=0\)
\(\Leftrightarrow\left(x-7\sqrt{x}+6\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=36\end{matrix}\right.\)
Dòng thứ 2 qua dòng thứ 3 anh làm chậm lại được không ạ, tại tắt quá e không hiểu
\(1,PT\Leftrightarrow2x-1=5\Leftrightarrow x=3\\ 2,\Leftrightarrow x-5=9\Leftrightarrow x=14\\ 3,ĐK:x\ge1\\ PT\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow x=50\left(tm\right)\\ 4,\Leftrightarrow x=\dfrac{\sqrt{50}}{\sqrt{2}}=\dfrac{5\sqrt{2}}{\sqrt{2}}=5\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
c: Ta có: \(\sqrt{2x}=\sqrt{5}\)
\(\Leftrightarrow2x=5\)
hay \(x=\dfrac{5}{2}\)
d: Ta có: \(\sqrt{3x-1}=4\)
\(\Leftrightarrow3x-1=16\)
\(\Leftrightarrow3x=17\)
hay \(x=\dfrac{17}{3}\)
Ta có: \(\sqrt{4\cdot\left(1-x\right)^2}=6\)
\(\Leftrightarrow2\left|x-1\right|=6\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
ĐKXĐ: \(2\le x\le5\)
\(\left(\sqrt{2x-4}-\sqrt{5-x}\right)\sqrt{3x-3}=3x-9\)
\(\Leftrightarrow\dfrac{\left(3x-9\right)\sqrt{3x-3}}{\sqrt{2x-4}+\sqrt{5-x}}=3x-9\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-9=0\Rightarrow x=3\\\dfrac{\sqrt{3x-3}}{\sqrt{2x-4}+\sqrt{5-x}}=1\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow\sqrt{3x-3}=\sqrt{2x-4}+\sqrt{5-x}\)
\(\Leftrightarrow3x-3=x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}\)
\(\Leftrightarrow x-2=\sqrt{\left(2x-4\right)\left(5-x\right)}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left(x-2\right)^2=\left(2x-4\right)\left(5-x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left(x-2\right)\left(3x-12\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy pt có 3 nghiệm \(x=\left\{2;3;4\right\}\)
a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)
TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)
TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)
Vậy x=0,5...
d, đk \(x\ge-1\)
=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)
\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)
a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow\left|3x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b) Ta có: \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)
\(\Leftrightarrow\left|x-3\right|=4-3x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)