Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: theo đề bài :
ab+4=x^2
<=>x^2-4=ab
<=>x^2-2^2=ab =>(x+2)(x-2)=ab
Với b=a+4 thì ab+4 là số chính phương.
Chứng minh: Với b=4 thì
ab+4= a(a+4) +4 =a2+4a+4=(a+2)2
Đặt ab + 4 = m22 (m ∈ N)
⇒ab = m22− 4 = (m − 2) (m + 2)
⇒b =(m−2).(m+2)a(m−2).(m+2)a
Ta có:m=a+2⇒⇒ m-2=a
⇒⇒b=a(a+4)aa(a+4)a=a+4
Vậy với mọi số tự nhiên a luôn tồn tại b = a + 4 để ab + 4 là số chính phương.
Answer:
Ta đặt: \(ab+4=m^2\)
\(\Rightarrow ab=m^2-4=\left(m-2\right).\left(m+2\right)\)
\(\Rightarrow b=\frac{\left(m-2\right).\left(m+2\right)}{a}\)
Ta có: \(m=a+2\)
\(\Rightarrow a=m-2\)
\(\Rightarrow b=\frac{a.\left(a+4\right)}{a}=a+4\)
Vậy với mọi số nguyên a luôn tồn tại \(b=a+4\) để \(ab+4\) là số chính phương
Đặt a.b + 4 = m2 (m là số tự nhiên)
=> a.b = m2 - 4 = (m - 2).(m+2) => b = (m-2).(m+2)/a
Chọn m = a + 2 => m - 2 = a
=> b = a.(a+4)/a = a+ 4
Vậy với mọi số tự nhiên a luôn tồn tại b = a+ 4 để a.b + 4 là số chính phương
Ta có:
Giả sử: ab + 4 = A2A2
<=> A2A2 - 4 = ab
<=> A2A2 - 2222 = ab
<=> (A+2)(A-2) = ab : luôn đúng với mọi a,b
=> Đpcm