Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đanh khoa bn tham khảo ở đây nha:
Bài 1. chú ý n lẻ
46^n + 296*13^n = (46^n - 13^n) + 297*13^n = (46 - 13)*A + 9*33*13^n = 33*(A + 9*13^n) chia hết cho 33
46^n + 296*13^n = (46^n + 13^n) + 295*13^n = (46 + 13)*B + 59*5*13^n = 59*(B + 5*13^n) chia hết cho 59
Do 33 và 59 nguyên tố cùng nhau nên 46^n + 296*13^n chia hết cho 33*59 = 1947
46^n + 296*13^n = (46^n - 13^n) + 297*13^n = (46 - 13)*A + 9*33*13^n = 33*(A + 9*13^n) chia hết cho 33
46^n + 296*13^n = (46^n + 13^n) + 295*13^n = (46 + 13)*B + 59*5*13^n = 59*(B + 5*13^n) chia hết cho 59
Do 33 và 59 nguyên tố cùng nhau nên 46^n + 296*13^n chia hết cho 33*59 = 1947
Ta có:
\(46^n+296.13^n\\ =46^n-13^n+297.13^n\\ =\left(46-13\right).X+9.33.13^n\\ =33.\left(X+9.13^n\right)⋮33\left(1\right)\)
Lại có:
\(46^n+296.13^n\\ =46^n+13^n+295.13^n\\ =\left(46+13\right).Y+59.5.13^n\\ =59.\left(Y+5.13^n\right)⋮59\left(2\right)\)
Mà 59 và 33 là 2 số nguyên tố cùng nhau (3)
Từ (1);2 và (3)\(\Rightarrow\)biểu thức trên chia hết cho:59.33=1947 (đpcm)
Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A chia 3 dư 2
Nếu n chia 3 dư 1 => n^2 chia 3 dư 1 => A chia 3 dư 1
Nếu n chia 3 dư 2 => n^2 chia 3 dư 1 => A chia 3 dư 2
=> ĐPCM
k mk nha
Vì n là số lẽ nên ta có : \(n=2k+1\left(k\in N\right)\). Thay vào :
\(\left(2k+1\right)^2-1=4k^2+4k+1-1=4k^2+4k=4k\left(k+1\right)\)
4 chia hết cho 4 ; \(k\left(k+1\right)\)là 2 số tự nhiên liên tiếp nên chia hết cho 2 \(\Rightarrow\left(2k+1\right)^2-1\) chia hết cho 8 (vì 4.2=8).
Vậy với mọi số tự nhiên n, nếu n là số lẽ thì \(n^2-1\) chia hết cho 8.
Gọi số nguyên đó là a. Ta cần chứng minh
a3+11a⋮6a3+11a⋮6
Xét: a3+11a=a(a2+11)=a(a2−1+12)=a(a2−1)+12a=a(a+1)(a−1)+12a⋮6a3+11a=a(a2+11)=a(a2−1+12)=a(a2−1)+12a=a(a+1)(a−1)+12a⋮6
Vậy ta có đpcm.
Lời giải:
Xét biểu thức A=n3−13nA=n3−13n. Ta cần cm A⋮6A⋮6
Thật vậy: A=n3−13n=n3−n−12n=n(n2−1)−12nA=n3−13n=n3−n−12n=n(n2−1)−12n
A=n(n−1)(n+1)−12nA=n(n−1)(n+1)−12n
Vì n,n−1n,n−1 là hai số tự nhiên liên tiếp nên tích n(n−1)⋮2n(n−1)⋮2
⇒n(n−1)(n+1)⋮3⇒n(n−1)(n+1)⋮3
Vì n−1,n,n+1n−1,n,n+1 là ba số tự nhiên liên tiếp nên tích n(n−1)(n+1)⋮3n(n−1)(n+1)⋮3
Kết hợp với (2,3) nguyên tố cùng nhau, do đó: n(n−1)(n+1)⋮6n(n−1)(n+1)⋮6
Mà 12n⋮612n⋮6
⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6
Ta có đpcm.
Lời giải:
Theo công thức hằng đẳng thức thì:
$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+....+ab^{n-2}+b^{n-1})\vdots a-b$ (đpcm)
Với $n$ lẻ:
$a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+....-ab^{n-2}+b^{n-1})\vdots a+b$ (đpcm)
cậu chỉ ra mk xem cách giải cái bài này nghĩ ma k ra ak?
Giả sử tồn tại số tự nhiên n sao cho \(n^2+5n-13⋮121\)
\(\Leftrightarrow\left(n^2-6n+9\right)+11n-22⋮11\) ( Do \(121⋮11\) )
\(\Leftrightarrow\left(n-3\right)^2+11\left(n-2\right)⋮11\)
\(\Rightarrow\left(n-3\right)^2⋮11\)
Mà 11 là số nguyên tố \(\Rightarrow n-3⋮11\) \(\Rightarrow n=11a+3\left(a\in N\right)\)Thay n = 11a + 3 vào ta có:\(\left(11a+3\right)^2+5\left(11a+3\right)-13=121a^2+121a+11⋮̸121\)
\(\Rightarrow\) Vô lí điều ta đã giả sử
\(\Rightarrow\) \(\forall n\in N\) thì \(n^2+5n-13⋮̸121\) ( đpcm)