K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2015

Trong 4 số a,b,c,d có ít nhất 2 số cùng số dư khi chia cho 3.
Trong 4 số a,b,c,d : nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4.Nếu ko thì 4 số dư theo thứ tự 0,1,2,3 $$ trong 4 số a,b,c,d có 2 số chẵn, 2 số lẽ.Hiệu của 2 số chẵ và 2 số lẽ trong 4 số đó chia hết cho 2
 =>TÍch trên chia hết cho 3,4 => chia hết cho 12 

26 tháng 5 2015

đơn giản 

thay a=0 b=1 c=2 d=3 là biết ngay

11 tháng 2 2020

+) Có 4 số nên có ít nhất 2 số cùng số dư khi chia cho 3 nên hiệu của chúng chia hết cho 3 

Suy ra 1 trong các hiệu trong tích \(\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(b-d\right)\left(b-c\right)\left(c-d\right)\)sẽ chia hết cho 3 

+) Có 4 số nên có ít nhất 2 số cùng số dư khi chia cho 4 hoặc có số dư lần lượt là 0;1;2;3.

* Nếu có 2 số cùng số dư chia hết cho 4 thì hiệu của chúng chia hết cho 4 

\(\Rightarrow\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(b-d\right)\left(b-c\right)\left(c-d\right)⋮4\)

* Nếu các số có số dư lần lượt là 0;1;2;3 thì có 2 số chẵn, 2 số lẻ, mỗi hiệu của chúng chia hết cho 2 nên chúng chia hết cho 4

\(\Rightarrow\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(b-d\right)\left(b-c\right)\left(c-d\right)⋮4\)

Vậy \(\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(b-d\right)\left(b-c\right)\left(c-d\right)⋮12\)(vì (3,4)=1)

16 tháng 2 2020

Lời giải:

Có 44 số a,b,c,da,b,c,d và 33 số dư có thể xảy ra khi chia một số cho 33 là 0,1,20,1,2

Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [43]+1=2[43]+1=2 số có cùng số dư khi chia cho 3

Không mất tổng quát giả sử đó là a,b⇒a−b⋮3a,b⇒a−b⋮3

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3

Mặt khác:

Trong 4 số a,b,c,da,b,c,d

Giả sử tồn tại hai số có cùng số dư khi chia cho 44 là a,ba,b

⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Nếu a,b,c,da,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,da,b,c,d có số dư khi chia cho 44 lần lượt là 0,1,2,30,1,2,3

⇒c−a⋮2;d−b⋮2⇒c−a⋮2;d−b⋮2

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12

Ta có đpcm,

14 tháng 11 2015

tick cho mình rồi mình làm cho

9 tháng 11 2020

tích rồi

2 tháng 6 2019

P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )

Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3

Xét 4 số a,b,c,d khi chia cho 4

- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4

- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3

có hiệu chia hết cho 2. do đó P chia hết cho 4

2 tháng 6 2019

#)Giải : 

Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3

Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4 

Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ 

Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2 

=> Tích trên chia hết cho 3 và 4 

Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12 

                           #~Will~be~Pens~#

17 tháng 7 2017

sai đề

4 tháng 8 2017

1/ Chứng minh nó chia hết cho 3:

Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.

\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.

\(\Rightarrow xy⋮3\)

Chứng minh chia hết cho 4.

Nếu cả x, y đều chẵn thì \(xy⋮4\)

Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ

\(\Rightarrow x=2k+1;y=2m;z=2n+1\)

\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m⋮2\)

\(\Rightarrow y⋮4\)

\(\Rightarrow xy⋮4\)

Với x, y đều lẻ nên z chẵn

\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)

\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này

Vậy \(xy⋮4\)

Từ chứng minh trên 

\(\Rightarrow xy⋮12\)

4 tháng 8 2017

2/ \(a+b=c+d\)

\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)

\(\Leftrightarrow2ab=2cd\)

\(\Leftrightarrow-2ab=-2cd\)

\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)

Kết hợp với \(a+b=c+d\)

\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)

\(\RightarrowĐPCM\)

DD
24 tháng 7 2021

Với \(x\)nguyên bất kì, ta có: \(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)=x\left(x^2-1\right)\left(x^2-4\right)+5x\left(x^2-1\right)\)

\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)+5x\left(x-1\right)\left(x+1\right)\)

Có \(x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)là tích của \(5\)số tự nhiên liên tiếp nên chia hết cho \(2,3,5\)mà \(\left(2,3,5\right)=1\)nên nó chia hết cho \(2.3.5=30\).

\(x\left(x-1\right)\left(x+1\right)\)là tích của \(3\)số tự nhiên liên tiếp nên chia hết cho \(2,3\)mà \(\left(2,3\right)=1\)nên chia hết cho \(2.3=6\)do đó \(5x\left(x-1\right)\left(x+1\right)\)chia hết cho \(30\).

Vậy \(x^5-x\)chia hết cho \(30\).

Ta có: 

\(a^5+b^5+c^5+d^5-\left(a+b+c+d\right)\)

\(=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)+\left(d^5-d\right)\)chia hết cho \(30\)

nên \(\left(a^5+b^5+c^5+d^5\right)\equiv\left(a+b+c+d\right)\left(mod30\right)\)

mà \(a^5+b^5+c^5+d^5=30\left(c^5+d^5\right)⋮30\)

suy ra \(a+b+c+d\)chia hết cho \(30\).