K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2016

xét vế trái ta có (nhân vào )

a/a + a/b + a/c + b/a + b/b + b/c + c/a + c/b +c/c  >= 9

<=> 3 + ( a/b +b/a ) + (b/c + c/b )+ (c/a +a/c) >=9

áp dụng bất đẳng thức phụ : a/b + b/a >=2 , b/c + c/b >= 2 , a/c +c/a >=2 ta được 

3 +2 +2+2 >=9

=> đpcm

ta CM bất đẳng thức phụ a/b +b/a >=2 nhé !

vì a/b +b/a >=2 nên ta xét hiệu:

a/b + b/c - 2 >= 0

ta quy đồng mẫu các phân số :

<=> a/ab + b2/ab - 2ab/ab >= 0

<=> (a+ b2 - 2ab) / ab = (a-b)2 /ab >=0

dấu = xảy ra khi a-b =0 <=> a=b

nên a/b + b/a - 2 >=0

<=> a/b + b/a >= 2  dấu = xảy ra khi a=b  

22 tháng 2 2016

giúp mk nha mk gấp lắm

30 tháng 3 2022

a) Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu "=" \(\Leftrightarrow a=b=c=2\)

30 tháng 3 2022

b) Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c=6\)

Dấu "=" \(\Leftrightarrow a=b=c=2\)

AH
Akai Haruma
Giáo viên
30 tháng 3 2022

Lời giải:
a. Áp dụng BĐT Cô-si:

$\frac{1}{a}+\frac{a}{4}\geq 1$

$\frac{1}{b}+\frac{b}{4}\geq 1$

$\frac{1}{c}+\frac{c}{4}\geq 1$

Cộng theo vế:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a+b+c}{4}\geq 3$

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{6}{4}\geq 3$

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{3}{2}$ (đpcm) 

Dấu "=" xảy ra khi $a=b=c=2$
b.

Áp dụng BĐT Cô-si:

$\frac{a^2}{c}+c\geq 2a$

$\frac{b^2}{a}+a\geq 2b$

$\frac{c^2}{b}+b\geq 2c$

$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}+(c+a+b)\geq 2(a+b+c)$

$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\geq a+b+c=6$ (đpcm) 

Dấu "=" xảy ra khi $a=b=c=2$

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

21 tháng 4 2018

a.

Xét hiệu:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-4\)

\(=1+\dfrac{a}{b}+\dfrac{b}{a}+1-4\)

\(=\dfrac{a}{b}+\dfrac{b}{a}-2\)

\(=\dfrac{a^2+b^2-2ab}{ab}\)

\(=\dfrac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng)

Suy ra:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

21 tháng 4 2018

b.

Đặt:

\(A=\)\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)

\(=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+3\) (1)

Áp dụng BĐT Cauchy cho 2 số không âm, ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\) (2)

\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2\) (3)

\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2\) (4)

Từ (1)(2)(3)(4) cộng vế theo vế, ta được:

\(A\ge3+2+2+2=9\)

=> BĐT luôn đúng

=> \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

28 tháng 3 2018

Áp dụng BĐT Cauchy-Schwarz dưới dạng phân số ta có

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)

<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (vì a+b+c=1) (đpcm)

28 tháng 3 2018

Cách khác dùng AM-GM

Áp dụng bđt AM-GM cho 3 số không âm ta được:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=3\cdot\dfrac{1}{\sqrt[3]{abc}}\)

Tiếp tục áp dụng bđt AM-GM cho 3 số không âm ta được:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\dfrac{3}{\sqrt[3]{abc}}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)(đpcm)