K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :

\(\frac{a}{b}=\frac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(b+d≠0\right)\)

=> đpcm

Đặt ab=cd=k (1) => a = bk ; c = dk . Thay vào a+cb+d ta được :

bk+dkb+d=k(b+d)b+d=k (2)

Từ (1) ; (2) => ab=a+cb+d ( đpcm )

30 tháng 9 2015

\(\frac{a}{b}=\frac{c}{d}\) 

=> \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

=> Đpcm

4 tháng 10 2017

\(\frac{a+b}{b}=1\frac{a}{b}\)

\(\frac{c+d}{d}=1\frac{c}{d}\)

Vì \(\frac{c}{d}=\frac{a}{b}\)nên\(1\frac{c}{d}=1\frac{a}{b}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(\RightarrowĐPCM\) 

4 tháng 10 2017

\({a \over b}={c \over d} => ad=bc \)

\({a+b \over b}={c+d \over d} \)  chỉ khi (a+b)d = (c+d)b <=> ad+bd=bc+bd mà ad=bc => ad+bd=bc+bd => \({a+b \over b}={c+d \over d}\)

mấy câu sau làm tương tự chủ yếu là nhân chéo

19 tháng 8 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\) ad = cb

Ta có: ab + cd = bc + cd

(a + c)d = (b + d)c

\(\Rightarrow\) a + \(\frac{c}{b}\) + d = \(\frac{c}{d}\)

Mà \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\) \(\frac{a}{b}\) = a + \(\frac{c}{b}\) + d

11 tháng 7 2016

thông minh đấy 

11 tháng 7 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

Vậy bài toán đã được chứng minh

31 tháng 7 2018

a+ba−b=c+dc−d⇒a+bc+d=a−bc−da+ba−b=c+dc−d⇒a+bc+d=a−bc−d

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

a+bc+d=a−bc−d=a+b+a−bc+d+c−d=2a2c=aca+bc+d=a−bc−d=a+b+a−bc+d+c−d=2a2c=ac (1)(1)

a+bc+d=a−bc−d=a+b−a+bc+d−c+d=2b2d=bda+bc+d=a−bc−d=a+b−a+bc+d−c+d=2b2d=bd (2)(2)

Từ (1),(2)(1),(2), ta có :

ac=bd⇒ab=cd

31 tháng 7 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{b}{a}=\frac{d}{c};\frac{a}{c}=\frac{b}{d};\frac{c}{a}=\frac{d}{b}\)

#

9 tháng 10 2015

vào câu hỏi tương tự ý bạn

9 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)

8 tháng 6 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(điều phải chứng minh)

8 tháng 6 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) 

1 tháng 10 2015

Ta có :a/b = c/d suy ra a/c = b/d

áp dụng tính chất dãy tính chất tỉ số bằng nhau

a/c =b/d = a+b/c+d = a-b/c-d suy ra a+b/a-b = c+d/c-d