K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

Gọi số nguyên đó là a. Ta cần chứng minh

a3+11a⋮6a3+11a⋮6

Xét: a3+11a=a(a2+11)=a(a2−1+12)=a(a2−1)+12a=a(a+1)(a−1)+12a⋮6a3+11a=a(a2+11)=a(a2−1+12)=a(a2−1)+12a=a(a+1)(a−1)+12a⋮6

Vậy ta có đpcm.

10 tháng 2 2020

Lời giải:

Xét biểu thức A=n3−13nA=n3−13n. Ta cần cm A⋮6A⋮6

Thật vậy: A=n3−13n=n3−n−12n=n(n2−1)−12nA=n3−13n=n3−n−12n=n(n2−1)−12n

A=n(n−1)(n+1)−12nA=n(n−1)(n+1)−12n

Vì n,n−1n,n−1 là hai số tự nhiên liên tiếp nên tích n(n−1)⋮2n(n−1)⋮2

⇒n(n−1)(n+1)⋮3⇒n(n−1)(n+1)⋮3

Vì n−1,n,n+1n−1,n,n+1 là ba số tự nhiên liên tiếp nên tích n(n−1)(n+1)⋮3n(n−1)(n+1)⋮3

Kết hợp với (2,3) nguyên tố cùng nhau, do đó: n(n−1)(n+1)⋮6n(n−1)(n+1)⋮6

Mà 12n⋮612n⋮6

⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6

Ta có đpcm.

6 tháng 6 2016

Để làm đc bài này bạn cần áp dụng phương pháp đồng dư,chắc chắn sẽ ra,

8 tháng 6 2016

full đi

27 tháng 9 2016

Bài 1

Trong 3 số tự nhiên tùy ý chọn ( a, b, c ε N ), chứng minh rằng luôn có ít nhất 1 cặp số ( 2 số trong 3 số đó) mà tổng và hiệu của chúng chia hết cho 2.

Giải : Áp dụng quy tắc chẵn –lẻ

Xét các trường hợp:

·        a, b, c cùng chẵn --> đương nhiên chọn bất kỳ cặp nào cũng có

                                               tổng và cả hiệu của chúng là số chia hết cho 2

·        a, b, c cùng lẻ --> đương nhiên chọn bất kỳ cặp nào cũng có

                                          tổng và cả  hiệu của chúng là số chia hết cho 2

·        a, b, c có 1 cặp là số lẻ --> Hiệu và tổng của 2 số lẻ chia hết cho 2

·        a, b, c có 1 cặp là số chẵn --> Hiệu và tổng của 2 số chẵn chia hết cho 2

         Hai trường hợp đầu có 3 cặp số thỏa mãn đầu bài

        Hai trường hợp cuối có 1 cặp số thỏa mãn đầu bài

---> Vậy có ít nhât 1 cặp số mà tổng và hiệu của chúng chia hết cho 2 (ĐPCM)

Bài 2

Trong 4 số tự nhiên tùy ý chọn ( a, b, c, d ε N ), chứng minh rằng luôn có ít nhất 1 cặp số ( 2 số trong 4 số đó) mà tổng hoặc hiệu của chúng chia hết cho 5.

Giải :  Áp dụng qui tắc số dư

    Ta thấy phép chia cho 5 có thể được các số dư là  0, 1, 2, 3, 4,

Xét các trường hợp:

·        cả 4 số có số dư khác nhau (0,1,2,3);(0,2,3,4);(0,1 4,2); (0,4,2,3);(1,2,3,4)

     bao giờ cũng có ít nhất 1 cặp số có số dư là (1+4) hoặc (2+3)

                  --> Tổng 1 cặp số đó chia hết cho 5

    Với nhóm số có số dư (1,2,3,4) --> 2 cặp có tổng chia hết cho 5

·        cả 4 số có số dư trùng nhau --> 6 cặp từng đôi một có hiệu = 0

                                                                                        --> chia hết cho 5

·        2 cặp có số dư trùng nhau --> Hiệu của 2 cặp đó = 0 --> chia hết cho 5

·        1 cặp có số dư trùng nhau --> Hiệu của 1 cặp đó = 0 --> chia hết cho 5

Vậy ít nhất cũng chọn ra 1 cặp số mà tổng hoặc hiệu của chúng chia hết cho 5.

Bài 3

Chứng minh rằng trong 7 số tự nhiên bất kỳ tùy chọn, bao giờ cũng có 4 số mà tổng của chúng chia hết cho 4

Giải:

Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2)

                A,  B,     C   Và   D, E, F    mỗi nhóm có 1 cặp chia hết cho 2

    

* Giả thử (A+B) =2 m  và  (D+E)=2n --> (A+B) + (C+D)= 2(m+n)

     

                     Còn 3 số   C     F    G  sẽ có 1 cặp chia hết cho 2

                                     ( C + F) = 2 p    Với m,n,p cúng là số tự nhiên

Trong 3 số m, n, p  luôn chọn được 2 số có tổng chia hết cho 2.

*Giả thử (m + n) =2 q  ( q là số TN) thì ta có

     (A+B) + (C+D)= 2(m+n) = 4q  ==> A+B+C+D chia hết cho 4 (ĐPCM)

Tương tự nếu chon các nhóm số khác ta cũng được 4 số trong 7 số bât kỳ trên chia hết cho 4

Chú ý: 

- Với bài toán chứng minh ta phải xét tất cả các trường hợp có thể xảy ra như bài 1 và bài 2; Với bài 3, tài liệu này chỉ nêu 1 trường hợp, còn các trường hợp khác nêu “CM tương tự”

- Bài 1 và bài 2 chú ý kết luận có sự khác nhau bởi 2 chữ  "và" với chữ "hoặc" !

k mik nha

20 tháng 10 2016
khi chia một số bất kì cho 3 thì số dư có thể là : 0;1;2.Cóa 3 số dư. theo nguyên lý Direchlet thì trong 9 số tự nhiên bất kì thì sẽ có ít nhất 3 số đồng dư khi chia cho 3. tổng của 3 số này là một số có tổng chia hết cho 3. Vậy : trong 9 số tự nhiên bất kì ta luôn chọn được 3 số có tổng chia hết cho 3.

Bạn tham khảo ỏ đây nhé:https://olm.vn/hoi-dap/question/427110.html

26 tháng 1 2016

troi lanh em khong cha loi duoc

NV
1 tháng 3 2022

Do các số chia 3 chỉ có thể có các số dư là 0,1,2

Giả sử không có số nào (hoặc bộ vài số nào) có tổng chia hết cho 3

Do các số đều ko chia hết cho 3 nên chúng chia 3 chỉ có thể dư 1 hoặc 2

Theo nguyên lý Dirichlet, trong 5 số luôn có ít nhất \(\left[\dfrac{5}{2}\right]+1=3\) số có cùng số dư khi chia 3

Giả sử bộ 3 số cùng số dư khi chia 3 là \(a_1;a_2;a_3\Rightarrow a_1+a_2+a_3⋮3\) (mâu thuẫn giả thiết ko có bộ số nào chia hết cho 3)

Vậy điều giả sử là sai hay luôn có 1 hoặc vài số có tổng chia hết cho 3