K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2021

Trong 14 stn có 3 chữ số chắc chắn có tồn tại 2 số chia cho 13 có cùng số dư nên hiệu của chúng chia hết cho 13 .

Gọi số có 6 chữ số chia hết cho 13 là abcdeg thì abc - deg \(⋮\)cho 13

Ta có : abcdeg + ( abc - deg ) = abcdeg + abc - deg 

= 1000 . abc + deg + abc - deg 

= ( 1000+ 1 ) . abc + ( deg - deg )

= 1001 . abc + 0 = 1001 . abc 

Vì 1001 chia hết cho 13 nên 1001 . abc chia hết cho 13

\(\Rightarrow\)abcdeg + ( abc - deg ) chia hết cho 13

Mà ( abc - deg ) chia hết cho 13 nên abcdeg chia hết cho 13 .

Vậy trong 14 số đó tồn tại 2 số mà khi viết liên tiếp nhau thì tao thành số có 6 chữ số chia hết cho 13 .

22 tháng 11 2015

 Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư 
Nên hiệu của chúng chia hết cho 13 
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13 
Ta có: abcdeg + (abc-deg) 
= abcdeg + abc-deg 
= 1000.abc + deg + abc - deg 
= (1000+1).abc + (deg-deg) 
= 1001.abc + 0 
= 1001.abc 
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13 
=> abcdeg + (abc-deg) chia hết cho 13 
Mà abc-deg chia hết cho 13 
Nên abcdeg chia hết cho 13 
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13

7 tháng 4 2017

ai tk mình đi đang bị âm điểm nè

cảm ơn các bạn nhìu!!!

11 tháng 3 2016

Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư 
Nên hiệu của chúng chia hết cho 13 
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13 
Ta có: abcdeg + (abc-deg) 
= abcdeg + abc-deg 
= 1000.abc + deg + abc - deg 
= (1000+1).abc + (deg-deg) 
= 1001.abc + 0 
= 1001.abc 
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13 
=> abcdeg + (abc-deg) chia hết cho 13 
Mà abc-deg chia hết cho 13 
Nên abcdeg chia hết cho 13 
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13

chuc ban hoc tot nha -_-

12 tháng 7 2015

gọi 2 số cần tìm là abc và def

ta có ;

abcdef = abc000 + def

=100abc + def

=1001abc + ( def - abc )

vì 1001 chia hết cho 13 suy ra 1001abc chia hết cho 13 suy ra 1001abc + (def-abc)chia hết cho 13

theo nguyên lý di-rich-le thì luôn luôn có 2 số mà khi viết liền nhau sẽ tạo thành số có 6 chữ số chia hết cho 13.

MÌNH KO CHẮC CHẮN LẮM ĐÂU ĐÓ !!! 

 

20 tháng 10 2020

vì một số chia hết cho 7 sẽ có số dư là 0, 1, 2, 3, 4, 5, 6. vậy trong 8 số tự nhiên bất kì sẽ có 2 số có cùng số dư khi chia cho 7

giả sử \(\overline{abc}\)và \(\overline{xyz}\) là hai số có 3 chữ số có cùng số dư khi chia cho 7,không mất tính tổng quát ta giả sử số dư đó là m với m thuộc từ 0 đến 6

khi đó: \(\overline{abc}\)=7k+mabc¯=7k+m  và \(\overline{xyz}\)=7q+m

cần chứng minh: \(\overline{abcxyz}\)chia hết cho 7

thật vậy: ta có \(\overline{abcxyz}\)=\(\overline{abc}.100+\overline{xyz}=\left(7k+m\right)=7000k+7q+1001m\)

nhận xét: 7000k, 7q , 1001m đều chia hết cho 7 nên suy ra \(\overline{abcxyz}\)chia hết cho 7

20 tháng 10 2020

https://olm.vn/hoi-dap/detail/94826564287.html

vào đó có câu trả lời tương tự nhé!

 Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư 
Nên hiệu của chúng chia hết cho 13 
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13 
Ta có: abcdeg + (abc-deg) 
= abcdeg + abc-deg 
= 1000.abc + deg + abc - deg 
= (1000+1).abc + (deg-deg) 
= 1001.abc + 0 
= 1001.abc 
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13 
=> abcdeg + (abc-deg) chia hết cho 13 
Mà abc-deg chia hết cho 13 
Nên abcdeg chia hết cho 13 
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13

tích nha