Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
34n = (...1) luôn có tận cùng là 1
=> 34n+1 = 24n . 3 = (...1) . 3 = (...3) luôn có tận cùng là 3
=> 34n+1 + 2 = (...3) + 2 = (...5) luôn có tận cùng là 5 nên chia hết cho 5
2x + 3y chia hết cho 17
<=> 2x + 3y + 34x + 17y chia hết cho 17 (34x; 17y chia hết cho 17)
<=> 36x + 20y chia hết cho 17
<=> 4.(9x + 5y) chia hết cho 17
Mà (4;17)=1
=> 9x + 5y chia hết cho 17
Vậy 2x+3y chia hết cho 17<=>9x +5y chia hết cho 17.
Nếu trong 11 số tự nhiên đó có 1 số chia hết cho 10 thì bài toán đã được chứng minh.
Nếu trong 11 số đã cho, không có số nào chia hết cho 10, ta đặt:
A1= 1
A2= 1+2
A3= 1+2+3
...
A11= 1+2+3+...+10+11
Ta biết rằng, trong 1 phép chia cho 10, ta luôn nhận được 10 số dư từ 0->9
Vì ta có 11 dãy số nên ít nhất có 2 dãy số có cùng số dư trong phép chia cho 10.
Giả sử, dãy Bm và Bn có cùng số dư trong phép chia cho 10 thì ( Bm - Bn ) chia hết cho 10. => đpcm.
Nếu trong 10 số đó có 1 số chia hết cho 10 thì bài toán đã được chứng minh.
Nếu trong 10 số đã cho không có bất kì số nào chia hết cho 10 thì ta đặt:
A1=a1
A2=a1 + a2
A3=a1+a2+a3
...
A10=a1+a2+a3 + ...+ a10
Trong phép toán 10 số tự nhiên khác nhau chia cho 10, ta luôn nhận được 10 số dư (các số dư đó là 0;1;2;3;...;9).
Vì vậy khi chia 10 dãy trên cho 10 thì có ít nhất 2 nhóm có cùng số dư.
Giả sử Am và An có cùn số dư trong phép chia cho 10 mà Am>An .
=> Am - An = (10k+a)-(10m+a) = 10k-a-10m-a=10k-10m=10(k-m) chia hết cho 10.
=>đpcm.