Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo: https://olm.vn/hoi-dap/detail/1839321884.html
Xét các số:
2,22 , 222,..., 2222...222
14 chữ số 2
1 số tự nhiên khi chia cho 13 sẽ có thể có các số dư là 0,1, 2, 3,..., 12 ( 13 số dư ) mà dãy trên có 14 số nên theo nguyên lí Diricle sẽ có ít nhất 2 số có cùng số dư khi chia cho 13
Giả sử 2 số đó là
222...22 và 222...22
m chữ số 2 n chữ số 2 ( m, n thuộc N*, 0<m<n \(\le\)20 )
=> 222...22 \(_-\)222...22 \(⋮\)13
n chữ số 2 m chữ số 2
<=> 222...222 000....00 \(⋮\) 13
n-m chữ số 2 m chữ số 0
<=> 222..222 x 10m \(⋮\)13
n-m chữ số 2
Mà ( 10m, 13 ) = 1
=> 222....2222 \(⋮\)13
n-m chữ số 2
Vậy tồn tại 1 số tự nhiên gồm toàn chữ số 2 là bội của 13.
Hok tốt
Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.
Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.
Bạn gọi như sau:
a1=7
a2=77
a3=777
......
a32=77777.....7777(gồm 32 số 7)
Đem chia cho 31 ta có 32 số số dư
R1;R2:R3;R4;....:R32 nhưng chỉ nhận 31 giá trị(0;1;2;3;4;5;6;.....;30) nên sẽ có 2 số dư trùng nhau
chẳng hạn Rm=Rn (Với m>n) thì am-an chia hết cho 31 (vì đồng dư),ta lại có
777..7(gồm m chữ số 7)-77...7(gồm n chữ số 7)=777...7(gồm m-n số 7)00....0(gồm n số 0)=777...7 nhân 10^n chia hết cho 31
vi 10^n và 31 là hai số nguyên tố cùng nhau nên suy ra 777..7 chia hết cho 31 .
Vì bài này chỉ chứng minh chứ ko phải tìm số nhé :D
Chọn bộ 13 số sau:
1,11,...111111 (13 chữ số 1)
Đem chia 13 số trên cho 12.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 111..111 (m chữ số 2) và 111.111 (n chữ số 2) m,n trong khoảng 1 đến 13
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 12 nên
[111.111 (m chữ số 2) - 111.111 (n chữ số 2)] chia hết cho 12
=>111.11100...000 (m-n chữ số 2; n chữ số 0) chia hết cho 12
hay 111.111(m-n chữ số 2).10^n chia hết cho 12
=>111.111 (m-n chữ số 2) chia hết cho 12
=> đpcm.