K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

giả sử trong ba số a, b, c không số nào là số dương. 

ta có: abc < 0 , mâu thuẫn 

do đó trong ba số a, b, c có ít nhất một số dương

19 tháng 3 2018

Xác định trong 3 số a,b,c trong đó phải có số âm, 0, dương: 
-Giả sử a=0 thay vào CT trên ta có: 
\0\=0=b^2(b-c). 
+vì b^2 luôn dương nên (b-c) phải bằng 0 
+Nếu b dương, c âm thì (b-c)>0 không đúng. 
-Giả sử b=0 thay vào CT trên ta có: 
b^2(b-c)=-0^2(0-c)=0=> a=0 Không đúng. 
+Nếu c=0 thì \a\=b^3 
Dấu = xảy ra khi b dương vì \a\ luôn luôn dương. 
Nếu b là số âm vế phải b^3 luôn âm thì dấu bằng không xảy ra vì\a\ luôn dương. 
Vậy ta chỉ xác định được một trường hợp duy nhất: Khi a âm, b dương và c bằng 0

19 tháng 3 2018

Hay ta có thể ;làm cách này

Vì ba số có a;b;c có 1 số âm,1 số dương,1số 0 nên ba số này phân biệt . 
+)a khác 0 vì nếu a = 0 thì vp = 0 = > hoặc b = 0 hoặc b = c 
mà b = 0 thì b = a ( vô lý) b = c cũng vô lí 
+) b khác 0 vì nếu b = 0 thì vp = 0 nên vt = 0 hay a = 0 
Vô lí vì khi đó a = b = 0 
Vậy c = 0 
ĐK trở thành \a\=b^2.b = b^3 
Vì vt > = 0 ( là biểu thức nằm trong dấu trị tuyệt đối) 
Nên vp = b^3 > = 0 => b > = 0 
Mà b khác 0 ( vì c = 0 và b khác c) nên b > 0 
=> a < 0 
Vậy a < 0; b > 0; c = 0.

P/s chắc là đúng nhỉ?

14 tháng 7 2019

Làm vô đây đài nhưng làm trog giấy ngắn lắm

1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0 
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0 
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0 
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*) 
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c 

* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0 
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0 
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0 
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*) 

thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0 
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*) 

Vậy c < 0 (nói chung là trong a, b, c phải có số âm) 

* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c 

(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0 
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0 
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*) 

a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0) 
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0 
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*) 

chứng tỏ trong a, b, c phải có số dương 

Tóm lại trong 3 số a, b, c phải có số dương và số âm 

1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0 
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0 
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0 
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*) 
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c 

* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0 
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0 
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0 
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*) 

thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0 
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*) 

Vậy c < 0 (nói chung là trong a, b, c phải có số âm) 

* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c 

(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0 
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0 
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*) 

a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0) 
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0 
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*) 

chứng tỏ trong a, b, c phải có số dương 

Tóm lại trong 3 số a, b, c phải có số dương và số âm

Tk mk nha

5 tháng 8 2016

 giả sử có 5 số tự nhiên khác nhau:

aVới 4 số a,b,c,d ta chỉ có tỉ lệ thức ad=bc(ko có ab=cd hay ac=bd)

với 4 số a,b,c,e cũng vậy

khi ấy ae=bc=ad nên e=d(do e,d>0)dẫn đến vô lí.

vậy chỉ có nhiều nhất là 4 số khác nhau.

Câu b giả sử chỉ có nhiều nhất 12 số bằng nhau.

Từ câu a ta có số các số lớn nhất có thể là 12*4=48(số)

(có 12 số=a,12số=b,...) nhưng 48<50 dẫn đến vô lí.

Vậy có ít nhất 13 số