Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xác định trong 3 số a,b,c trong đó phải có số âm, 0, dương:
-Giả sử a=0 thay vào CT trên ta có:
\0\=0=b^2(b-c).
+vì b^2 luôn dương nên (b-c) phải bằng 0
+Nếu b dương, c âm thì (b-c)>0 không đúng.
-Giả sử b=0 thay vào CT trên ta có:
b^2(b-c)=-0^2(0-c)=0=> a=0 Không đúng.
+Nếu c=0 thì \a\=b^3
Dấu = xảy ra khi b dương vì \a\ luôn luôn dương.
Nếu b là số âm vế phải b^3 luôn âm thì dấu bằng không xảy ra vì\a\ luôn dương.
Vậy ta chỉ xác định được một trường hợp duy nhất: Khi a âm, b dương và c bằng 0
Hay ta có thể ;làm cách này
Vì ba số có a;b;c có 1 số âm,1 số dương,1số 0 nên ba số này phân biệt .
+)a khác 0 vì nếu a = 0 thì vp = 0 = > hoặc b = 0 hoặc b = c
mà b = 0 thì b = a ( vô lý) b = c cũng vô lí
+) b khác 0 vì nếu b = 0 thì vp = 0 nên vt = 0 hay a = 0
Vô lí vì khi đó a = b = 0
Vậy c = 0
ĐK trở thành \a\=b^2.b = b^3
Vì vt > = 0 ( là biểu thức nằm trong dấu trị tuyệt đối)
Nên vp = b^3 > = 0 => b > = 0
Mà b khác 0 ( vì c = 0 và b khác c) nên b > 0
=> a < 0
Vậy a < 0; b > 0; c = 0.
P/s chắc là đúng nhỉ?
Làm vô đây đài nhưng làm trog giấy ngắn lắm
1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*)
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c
* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*)
thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*)
Vậy c < 0 (nói chung là trong a, b, c phải có số âm)
* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c
(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*)
a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0)
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*)
chứng tỏ trong a, b, c phải có số dương
Tóm lại trong 3 số a, b, c phải có số dương và số âm
1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*)
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c
* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*)
thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*)
Vậy c < 0 (nói chung là trong a, b, c phải có số âm)
* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c
(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*)
a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0)
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*)
chứng tỏ trong a, b, c phải có số dương
Tóm lại trong 3 số a, b, c phải có số dương và số âm
Tk mk nha
giả sử có 5 số tự nhiên khác nhau:
aVới 4 số a,b,c,d ta chỉ có tỉ lệ thức ad=bc(ko có ab=cd hay ac=bd)
với 4 số a,b,c,e cũng vậy
khi ấy ae=bc=ad nên e=d(do e,d>0)dẫn đến vô lí.
vậy chỉ có nhiều nhất là 4 số khác nhau.
Câu b giả sử chỉ có nhiều nhất 12 số bằng nhau.
Từ câu a ta có số các số lớn nhất có thể là 12*4=48(số)
(có 12 số=a,12số=b,...) nhưng 48<50 dẫn đến vô lí.
Vậy có ít nhất 13 số
giả sử trong ba số a, b, c không số nào là số dương.
ta có: abc < 0 , mâu thuẫn
do đó trong ba số a, b, c có ít nhất một số dương