Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì :
a^2; b^2 là số chính phương
a,b không chia hết cho 3
Nên a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3 (1)
Ta có :
(a^2 - 1) - (b^2 - 1) = (a - 1)(a + 1) - (b - 1)(b + 1) chia hết cho 8 (2)
Vì :
(a - 1); (a + 1)(a - 1); (a + 1) là 2 số chẵn liên tiếp
(b - 1); (b + 1)(b - 1), (b + 1) là 2 số chẵn liên tiếp
Từ (1), (2)
=> a^2 - b^2 chia hết cho 3.8
=> a^2 - b^2 chia hết cho 24
Bài 1:
$a^2-1=(a-1)(a+1)$
Vì $a$ là số nguyên tố lớn hơn $3$ nên $a$ không chia hết cho $3$. Suy ra $a$ chia $3$ dư $1$ hoặc $2$
Nếu $a$ chia $3$ dư $1\Rightarrow a-1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$
Nếu $a$ chia $3$ dư $2\Rightarrow a+1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$
Vậy $a^2-1\vdots 3(1)$
Mặt khác, $a$ là số nguyên tố lớn hơn $3$ thì $a$ lẻ. Do đó $a$ có dạng $4k+1$ hoặc $4k+3$ ($k\in\mathbb{Z}$)
Nếu \(a=4k+1\Rightarrow a^2-1=(4k+1)^2-1=16k^2+8k\vdots 8\)
Nếu \(a=4k+3\Rightarrow a^2-1=(4k+3)^2-1=16k^2+24k+8\vdots 8\)
Vậy $a^2-1\vdots 8(2)$
Từ $(1);(2)$ mà $(3,8)=1$ nên $a^2-1\vdots 24$ (đpcm)
Bài 2:
Từ bài 1 ta thấy rằng với mọi số $a$ là số nguyên tố lớn hơn 3 thì $a^2-1\vdots 24(1)$
Tương tự $b^2-1\vdots 24(2)$
Từ \((1);(2)\Rightarrow (a^2-1)-(b^2-1)\vdots 24\)
\(\Leftrightarrow a^2-b^2\vdots 24\) (đpcm)
a, Vì a là số nguyên tố lớn hơn 3 nên a có dạng 3k+1 hoặc 3k+2(k thuộc N*)
Xét a=3k+1=> a2-1=(a-1)(a+1)=3k(3k+2)\(⋮\)3
Vì k thuộc N* mà 3k,3k+2 là 2 số cùng tính chẵn lẻ liên tiếp nên 3k(3k+2) chia hết cho 8
mà (8,3)=1=> a2-1\(⋮\)24
Đề sai. Bạn cho $a=3,b=5$ thì $a^3b-ab^2=60$ không chia hết cho $240$
\(\text{Giải}\)
\(a^2-b^2=\left(a-b\right)\left(b+a\right)\)
\(\text{Vì: a,b là các số nguyên tố lớn hơn 3 nên: a,b lẻ}\)
\(\text{suy ra a-b và a+b đồng thời chẵn}\)
\(\text{Mặt khác: a-b và a+b chắc chắn có 1 số chia hết cho 2 và 1 số chia hết cho 4}\)
\(\Rightarrow a^2-b^2⋮2.4=8\left(1\right)\)
\(\text{vì a và b là các số nguyên tố lớn hơn 3 nên chia 3 dư 1 hoặc dư 2}\)
\(\text{với a và b cùng số dư thì a bình trừ b bình chia hết cho 3(bình là mũ hai nhé)}\)
\(\text{với a và b khác số dư thì a+b chia hết cho 3 suy ra a bình trừ b bình chia hết cho 3}\)
\(\Rightarrow a^2-b^2⋮3\left(2\right)\)
\(\text{từ (1) và (2) suy ra: a^2-b^2 chia hết cho 24(đpcm)}\)