Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gợi ý: phân tích 50 n + 2 - 50 n + 1 = 245.10. 50 n .
b) Gợi ý: phân tích n 3 - n = n(n - 1)(n +1).
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!\)
hay \(n\left(n-1\right)\left(n+1\right)⋮6\)
n3 - n =n(n2-1)=(n-1)n(n+1)
mà (n-1)n(n+1) là 3 số nguyên liên tiếp nên (n-1)n(n+1) sẽ có ít nhất 1 số chia hết cho 2 và có ít nhất 1 số chia hết cho 3
ta lại có ƯCLN(2;3)=1
=> (n-1)n(n+1) chia hết cho 2*3=6
=> điều phải chứng minh
n3-n=n(n2-1)=n(n+1)(n-1)
Do n là số nguyên =>n-1 ; n ; n+1 là 3 số nguyên liên tiếp nên trong đó tồn tại 1 số chia hết cho 2 và 1 số chia hết cho 3
Mà ƯCLN(2;3)=1
=>n(n-1)(n+1) chia hết cho 2.3 hay chia hết cho 6 với mọi n nguyên
Ta có: n3-n=n.(n2-1)=n.(n-1).(n+1)=(n-1).n.(n+1)
Vì (n-1) và n là 2 số tự nhiên liên tiếp=>(n-1).n chia hết cho 2=>(n-1).n.(n+1) chia hết cho 2(1)
Vì (n-1),n và n+1là 3 số tự nhiên liên tiếp=>(n-1).n.(n+1) chia hết cho 3(2)
Từ (1) và (2) ta thấy:
(n-1).n.(n+1) chia hết cho 2,3.
mà (2,3)=1
=>(n-1).n.(n+1) chia hết cho 6
=>n3-n chia hết cho 6
=>ĐPCM