Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân từng vế của ba đẳng thức đã cho ta được :
xy . yz . zx = \(\frac{13}{15}.\frac{11}{3}.\left(-\frac{3}{13}\right)\)
\(\Leftrightarrow\) (xyz)2 = \(-\frac{11}{15}\) (1)
Đẳng thức (1) không xảy ra vì (xyz)2 > 0.
Vậy không tồn tại ba số hữu tỉ x,y,z thỏa mãn điều kiện đề bài.
y.y=13/15
=>x và y cùng dấu(1)
y.z=11/3
=>y và z cũng cùng dấu(2)
Mà z.x=-3/11
=> x và z lại trái dấu(3)
Từ (1),(2) và (3) => 3 số x,y,z k tồn tại
Vay x,y,z khong ton tai
Ta có : \(A=\frac{2019}{x+xy+1}+\frac{2019}{y+yz+1}+\frac{2019}{z+zx+1}=2019\left(\frac{1}{x+xy+1}+\frac{1}{y+yz+1}+\frac{1}{z+zx+1}\right)\)
\(=2019\left(\frac{z}{xz+xyz+z}+\frac{xz}{xyz+xyz^2+xz}+\frac{1}{z+zx+1}\right)\)
\(=2019\left(\frac{z}{xz+z+1}+\frac{xz}{1+z+xz}+\frac{1}{z+zx+1}\right)\)(vì xyz = 1)
\(=2019\left(\frac{z+xz+1}{xz+z+1}\right)=2019\)
Vậy A = 2019
số bộ (x;y;z) có 0 bộ.Vì ta lấy xy.yz.xz=(xyz)2=\(-\frac{54}{455}\)
Ta biết một số bình phương lên sẽ không bao giờ âm suy ra có 0 bộ (x;y;z)
Ta có: \(xy=\frac{13}{15}\Rightarrow x=\frac{13}{15y}\)
\(yz=\frac{1}{3}\Rightarrow y=\frac{1}{3z}\)
\(zx=-\frac{3}{13}\Rightarrow z=-\frac{3}{13x}\)
Thay x vào z ta có:
\(z=-\frac{3}{13x}=-\frac{3}{13.\frac{13}{15y}}\)
\(z=-\frac{45y}{169}\)
Thay y vào z ta có:
\(z=\frac{-45.\frac{1}{3}z}{169}\)
\(z=-\frac{15}{169}z\)( vô lý )
\(\Rightarrow\)z không có giá trị
\(\Rightarrow\)x;y không có giá trị
đpcm
Giải :
Nhân từng vế của ba đẳng thức đã cho ta được :
xy . yz . zx = 13/15 .11/3 . ( - 3/13 )
\(\Leftrightarrow\)( xyz )\(^2\)= - 11/15 ( 1 )
Đẳng thức (1) không xảy ra vì (xyz)\(^2\)\(>\)\(0\)
Vậy không tồn tại ba số hữu tỉ x , y , z thỏa mãn điều kiện đề bài