K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2015

Đặt \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)\(\left(a_i\in Z\right)\)

Ta có: \(f\left(15\right)=a_n.15^n+a_{n-1}.15^{n-1}+...+a_1.15+a_0=9\)

\(f\left(7\right)=a_n.7^n+...+a_1.7+a_0=5\)

\(\Rightarrow\left(15^n-7^n\right)a_n+\left(15^{n-1}-7^{n-1}\right).a_{n-1}+...+\left(15-7\right)a_1=9-5\)

Mà \(15^k-7^k=\left(15-7\right)\left(15^{k-1}+15^{k-2}.7+...+15^i.7^{k-1-i}+..+15.7^{k-2}+7^{k-1}\right)=8X_k\)

\(\left(X_K\in Z\right)\)

\(\Rightarrow8X_n.a_n+8X_{n-1}.a_{n-1}+...+8a_1=4\)

\(\Rightarrow X_na_n+X_{n-1}a_{n-1}+...+X_1a_1=\frac{1}{2}\text{ (vô lí do }X_k,\text{ }a_k\in Z\text{)}\)

Vậy không tồn tại đa thức hệ số nguyên thỏa f(7) = 5; f(15) = 9.

27 tháng 11 2022

\(P=\dfrac{20\left(x^2+6x+9\right)}{\left(3x+5+2x\right)\left(3x+5-2x\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3+x\right)\left(2x+3-x\right)}{3\left(x+3\right)\left(x+5\right)}\)

\(=\dfrac{20\left(x+3\right)^2}{5\left(x+1\right)\left(x+5\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(x-5\right)\cdot5\left(x+1\right)}-\dfrac{3\left(x+1\right)\left(x+3\right)}{3\left(x+3\right)\left(x+5\right)}\)

\(=\dfrac{5\left(x+3\right)^2}{\left(x+1\right)\left(x+5\right)}+\dfrac{\left(x+5\right)}{x+1}-\dfrac{x+1}{x+5}\)

\(=\dfrac{5x^2+30x+45+x^2+10x+25-x^2-2x-1}{\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{5x^2+38x+69}{\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{5x^2+38x+69}{x^2+6x+5}\)

Để P là số nguyên thì \(5x^2+30x+25+8x+34⋮x^2+6x+5\)

=>\(8x+34⋮x^2+6x+5\)

=>\(\left\{{}\begin{matrix}8x+34⋮x+1\\8x+34⋮x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8x+8+26⋮x+1\\8x+40-6⋮x+5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+1\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\\x+5\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\end{matrix}\right.\)

=>\(x\in\left\{-2;1\right\}\)

8 tháng 7 2017

Ta có: \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)

<=> \(x=9-\left(\dfrac{\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}}{\left(\sqrt{\dfrac{9}{4}-\sqrt{5}}\right)\left(\sqrt{\dfrac{9}{4}}+\sqrt{5}\right)}\right)\)

<=> \(x=9-\left(\dfrac{\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}}{\sqrt{\dfrac{81}{16}-5}}\right)\)

<=> \(x=9-\left(\dfrac{\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}}{\dfrac{1}{4}}\right)\)

Đặt \(D=\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}\)

<=> \(D^2=\left(\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}\right)^2\)

\(=\dfrac{9}{4}+\sqrt{5}+\dfrac{9}{4}-\sqrt{5}-2\sqrt{\left(\sqrt{\dfrac{9}{4}+\sqrt{5}}\right)\left(\sqrt{\dfrac{9}{4}-\sqrt{5}}\right)}\)

<=> \(D^2=\dfrac{9}{2}-2.\sqrt{\dfrac{1}{16}}=\dfrac{9}{2}-2.\dfrac{1}{4}=4\)

<=> \(D=\sqrt{4}=2\)

=> \(x=9-\dfrac{2}{\dfrac{1}{4}}=1\)

\(f\left(x\right)=\left(x^4-3x+1\right)^{2016}\)

=> \(f\left(1\right)=\left(1-3+1\right)^{2016}=1\)

Hay \(f\left(x\right)=1\) khi \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)

P/s: Đã lm chậm nhất có thể!

8 tháng 7 2017

thanks ban.the la minh lam ok r

NV
9 tháng 4 2019

\(x^3-ax^2-2x+2a=0\Leftrightarrow x^2\left(x-a\right)-2\left(x-a\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x-a\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\\x=a\end{matrix}\right.\)

Để pt có 3 nghiệm pb \(\Leftrightarrow a\ne\pm\sqrt{2}\)

TH1: \(a=\frac{\sqrt{2}-\sqrt{2}}{2}\Rightarrow a=0\)

TH2: \(\sqrt{2}=\frac{a-\sqrt{2}}{2}\Rightarrow a=3\sqrt{2}\)

TH3: \(-\sqrt{2}=\frac{a+\sqrt{2}}{2}\Rightarrow a=-3\sqrt{2}\)

Vậy \(a=\left\{0;\pm3\sqrt{2}\right\}\)