Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\)
\(\Rightarrow\dfrac{S}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\)
\(\Rightarrow S+\dfrac{S}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\right)\)
\(\Leftrightarrow\dfrac{50S}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}< \dfrac{1}{50}\)
\(\Leftrightarrow S< \dfrac{1}{50}\)
Vậy \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}< \dfrac{1}{50}\) (Đpcm)
Đặt \(A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\)
Ta có:
\(\dfrac{A}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\)
\(\Rightarrow A+\dfrac{A}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\right)\)
\(\Rightarrow\dfrac{50A}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}\)
\(\Rightarrow A< \dfrac{1}{50}\)
=> ĐPCM.
\(\text{Đặt:}S=\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\Rightarrow49S=1-\frac{1}{7^2}+.....-\frac{1}{7^{98}}\Rightarrow49S+S=50S=\left(1-\frac{1}{7^2}+\frac{1}{7^4}-....-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\right)=1-\frac{1}{7^{100}}< 1\Rightarrow S< \frac{1}{50}\left(\text{đpcm}\right)\)
Đặt: \(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)
Ta có: \(\left\{{}\begin{matrix}A>\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\\A< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\end{matrix}\right.\)
Vậy \(\dfrac{1}{6}< A< \dfrac{1}{4}\)
\(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{1\dfrac{1}{6}-\dfrac{7}{8}+0,7}\\ =\dfrac{2\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}-\dfrac{\dfrac{2}{6}-\dfrac{2}{8}+\dfrac{2}{10}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\\ =\dfrac{2}{7}-\dfrac{2\left(\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{10}\right)}{7\left(\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{10}\right)}\\ =\dfrac{2}{7}-\dfrac{2}{7}=0\)
phân số cuối là \(\dfrac{2}{7}-\dfrac{2\left(\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{10}\right)}{7\left(\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{10}\right)}\) nha :vv
\(B=\dfrac{1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}}{4+\dfrac{4}{7}+\dfrac{4}{7^2}-\dfrac{4}{7^3}}\cdot\dfrac{858585}{313131}\cdot\left(-1\dfrac{14}{17}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{85}{31}\cdot\dfrac{-31}{17}\)
\(=\dfrac{-5}{4}\)
A = 1 - 2 + 3 - 4 +...+97 - 98 + 99 - 100
A = 1 + ( -2 + 3) +...+ ( -98 + 99 ) - 100
A = 1 + 1 + ... + 1 - 100
A = 50 - 100
A = -50
B = \(\frac{7}{19.29}\) + \(\frac{7}{29.39}\) + \(\frac{7}{39.49}\) + \(\frac{7}{49.59}\) + \(\frac{7}{59.69}\)
B = 7. ( \(\frac{1}{19.29}\) + \(\frac{1}{29.39}\) + \(\frac{1}{39.49}\) + \(\frac{1}{49.59}\) + \(\frac{1}{59.69}\))
B= 7. \(\frac{1}{10}\)( \(\frac{10}{19.29}\)+ \(\frac{10}{29.39}\)+ \(\frac{10}{39.49}\)+\(\frac{10}{49.59}\)+\(\frac{10}{59.69}\))
B = 7 . \(\frac{1}{10}\) ( \(\frac{1}{19}\) - \(\frac{1}{69}\) )
B = 7 . \(\frac{1}{10}\) . \(\frac{50}{1311}\)
B = \(\frac{7}{10}\) . \(\frac{50}{1311}\)
B = \(\frac{35}{1311}\)
Chúc bạn học giỏi !!!
a/ \(\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(6,3.12-21.36\right)}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+2+3+.....+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right).0}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}}\)
\(=\dfrac{0}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}}\)
\(=0\)
A= \(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{9}{11}=\dfrac{1}{3}-\dfrac{7}{9}=\dfrac{3}{9}-\dfrac{7}{9}=-\dfrac{4}{9}\)
\(B=\left(\dfrac{1}{5}+\dfrac{2}{15}+\dfrac{2}{3}\right)+\left(-\dfrac{2}{7}+\dfrac{1}{42}-\dfrac{13}{28}-\dfrac{1}{4}\right)\)
\(=\dfrac{3+2+10}{15}+\dfrac{-2\cdot12+2-13\cdot3-21}{84}\)
=1-82/84
=2/84=1/42
\(C=\dfrac{1}{50}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\right)\)
\(=\dfrac{1}{50}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=\dfrac{1}{50}-1+\dfrac{1}{50}=\dfrac{1}{25}-1=-\dfrac{24}{25}\)
\(D=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)
A=\(\dfrac{7^2-1}{7^4}+\dfrac{7^2-1}{7^8}+...+\dfrac{7^2-1}{7^{100}}=\left(7^2-1\right)\left(\dfrac{1}{7^4}+\dfrac{1}{7^8}+...+\dfrac{1}{7^{100}}\right)=48\cdot B\)Dễ dàng tính được B( nhân hết với 7 mũ 4 roi trừ đi, chia ra là xong) ra đpcm.
Lên lớp 11 thì ta có dạng tổng quát luôn này(tức là nếu n quá lớn thì có thể coi là xảy ra dấu bằng) \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^n}-\dfrac{1}{7^{n+2}}< \dfrac{1}{50}\)