Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2-1=2y^2\)
Do vế phải chẵn \(\Rightarrow\) vế trái chẵn \(\Leftrightarrow x\) lẻ
\(\Rightarrow x=2k+1\)
Pt trở thành: \(\left(2k+1\right)^2-1=2y^2\Leftrightarrow2\left(k^2+k\right)=y^2\)
Vế trái chẵn \(\Rightarrow\) vế phải chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn
\(\Rightarrow y=2\)
\(\Rightarrow x^2-9=0\Rightarrow x=3\)
Vậy \(\left(x;y\right)=\left(3;2\right)\)
Ta có: x:y:z =4:5:6
⇒\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}\)
⇒\(\dfrac{x^2}{16}=\dfrac{2y^2}{50}=\dfrac{z^2}{36}\)
⇒\(\dfrac{x^2-2y^2+z^2}{16-50+36}=\dfrac{18}{2}=9\)
\(\dfrac{x}{4}=9\Rightarrow x=36\)
\(\dfrac{y}{5}=9\Rightarrow y=45\)
\(\dfrac{z}{6}=9\Rightarrow z=54\)
=> x^2 = 2y^2 + 1
+, Nếu y=3 => ko tồn tại x thuộc p
+, Nếu y khác 3 => y ko chia hết cho 3 => y^2 chia 3 dư 1 => 2y^2 chia 3 dư 2
=> x^2 = 2y^2+1 chia hết cho 3
=> x chia hết cho 3 ( vì 3 là số nguyên tố )
=> x = 3
=> y = 2
Vậy x=3 và y=2
Tk mk nha
Ta có : C = (x2 - 2xy + y2) + ( y2 – 4y+4)+1 = (x –y)2 + (y -2)2 + 1 Vì (x – y)2 ≥ 0 ; (y-2)2 ≥ 0 Do vậy: C ≥ 1 với mọi x;y Dấu “ = ” Xảy ra khi x-y = 0 và y-2 =0 ⇔ x=y =2Vậy: Min C = 1 khi x = y =2
\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)
\(\Leftrightarrow x^2+2x^2y^2+2y^2-x^2y^2-2x^2-2=0\)
\(\Leftrightarrow x^2y^2-x^2+2y^2-2=0\)
\(\Leftrightarrow\left(x^2y^2-x^2\right)+\left(2y^2-2\right)=0\)
\(\Leftrightarrow x^2\left(y^2-1\right)+2\left(y^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(y^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(y-1\right)\left(y+1\right)=0\)
Dễ thấy: \(x^2+2\ge2>0\forall x\) (vô nghiệm)
\(\Rightarrow\left[{}\begin{matrix}y-1=0\\y+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
tích mình với
ai tích mình
mình tích lại
thanks nhiều
k mk đi mk sẽ k lại