Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với các bài yêu cầu như thế này, em chỉ cần biến đổi, rút gọn biểu thức để giá trị cuối cùng là một hằng số.
a) Câu này có vấn đề.
Cô đặt f(0) = (x-2)2 + 6(x+1)(x-3) - (x-2)(x2 - 2x - 4) = -22
f(1) = -28 \(\ne f\left(0\right)\)
Vậy rõ ràng giá trị biểu thức phụ thuộc biến. Em xem lại đề nhé.
b) \(\frac{a}{\left(a-b\right)\left(a-c\right)}+\frac{b}{\left(b-a\right)\left(b-c\right)}+\frac{c}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{-a\left(b-c\right)-b\left(c-a\right)-c\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{-ab+ac-bc+ab-ca+bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=0\)
Vậy giá trị của biểu thức không phụ thuộc vào biến.
Ta có : a-b-c=0 \(\Rightarrow\)a-b=c ; a-c=b va b-c=a
Hay : \(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\)
\(=\frac{a^3+b^3+c^3}{abc}\)
\(=\frac{3abc}{abc}\)
=3 (dpcm)
a) Ta có : \(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự : \(b^2+1=\left(b+a\right)\left(b+c\right)\) ; \(c^2+1=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
Vậy \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)
b) Ta có ; \(a^2+2bc-1=a^2+2bc-\left(ab+bc+ac\right)=a^2-ab+bc-ac=a\left(a-b\right)-c\left(a-b\right)\)
\(=\left(a-b\right)\left(a-c\right)\)
Tương tự : \(b^2+2ac-1=\left(a-b\right)\left(c-b\right)\) ; \(c^2+2ab-1=\left(a-c\right)\left(b-c\right)\)
Suy ra \(\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ab-1\right)=\left(a-b\right)^2.\left(c-a\right)^2.\left[-\left(b-c\right)^2\right]\)
Vậy : \(B=\frac{-\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)}=-1\)