Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(P\left(n\right)=3.7^{2n+1}+6.2^{2n+2}\)
Ta thấy \(P\left(0\right)=45⋮45\), luôn đúng.
Giả sử khẳng định đúng đến \(n=k\), khi đó \(P\left(k\right)=3.7^{2k+1}+6.2^{2n+2}⋮45\). Ta cần chứng minh khẳng định đúng với \(n=k+1\). Thật vậy:
\(P\left(k+1\right)=3.7^{2\left(k+1\right)+1}+6.2^{2\left(k+1\right)+2}\)
\(=3.7^{2k+3}+6.2^{2k+4}\)
\(=49.3.7^{2k+1}+4.6.2^{2k+2}\)
\(=4\left(3.7^{2k+1}+6.2^{2k+2}\right)+45.3.7^{2k+1}\)
Hiển nhiên \(45.3.7^{2k+1}⋮45\). Lại có \(4\left(3.7^{2k+1}+6.2^{2k+2}\right)\) theo giả thiết quy nạp nên suy ra \(P\left(k+1\right)⋮45\), suy ra khẳng định đúng với mọi \(n\inℕ\). Ta có đpcm
c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........
Ta có : \(2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
=> \(-5n^2-5n=-5\left(n^2+n\right)\)Như vậy luôn chia hết cho 5 với mọi n
Ta có:\(2n-3⋮n+1\)
\(\Rightarrow2n+2-5⋮n+1\)
\(\Rightarrow2\left(n+1\right)-5⋮n+1\)
\(\Rightarrow5⋮n+1\)
Vì \(n\inℤ\) nên \(n+1\inℤ\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n + 1 | 1 | 5 | -1 | -5 |
n | 0 (thỏa mãn) | 4 (thỏa mãn) | -2 (thỏa mãn) | -6 (thỏa mãn) |
Vậy \(n\in\left\{-6;-2;0;4\right\}\).
2n+3+3n+1+2n+3+2n+2
=2n.23+3n.3+2n.23+2n.22
=2n(23+23)+3n.3+2n.22
=2n.24+3n.3+2n.22
=2n(24+22)+3n.3
=2n.20+3n.3
bạn chép sai đề rùi
3n+1 phải là 2n+1