K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

vì P(x) chia hết cho 3 với mọi x nên ta xét các trường hợp sau:

- ta có: P(0) chia hết cho 3. mà P(0) = c nên ta suy ra c chia hết cho 3

- ta có: P(1) chia hết cho 3. Mà P(1)=a+b+c nên ta suy ra a+b+c chia hết cho 3

lại có c chia hết cho 3 (đã chứng minh)

nên suy ra a+b chia hết cho 3

- ta có ; P(2) chia hết cho 3. mà P(2)= 4a+2b+c=2a+2(a+b)+c

mà  c chia hết cho 3, a+b chia hết cho 3 ( đã chứng minh)

nên suy ra 2a chia hết cho 3

mà (2,3)=1    (2 số nguyên tố cùng nhau)

suy ra a chia hết cho 3

mà a+b chia hết cho 3

nên suy ra b chia hết cho 3

vậy a,b,c chia hết cho 3

13 tháng 1 2016

Tcó A+B=a+b-5+(-b)-c+1

       = a-c+(-b+b) +(-5+1)

       =a-c-4

C-D=( b-c-4)- (b-a)

=b-c-4-b+a

=b-b+a-c-4

= a-c-4

Vậy A+B=C-Dvui

 

 

Ta có: A+B=a+b-5+(-b)-c+1

=a-c+(-b+b)+(-5+1)

=a-c+(-4)

=a-c-4

Vậy A+B=C-D

11 tháng 4 2016

Ta có: \(\frac{a}{b}=\frac{2}{7}\) =>      b= \(\frac{7}{2}a\)

             \(\frac{b}{c}=\frac{21}{26}\) =>   c= \(\frac{26}{21}b=\frac{26}{21}.\frac{7}{2}a=\frac{13}{3}a\)

Suy ra: \(\frac{a}{c}=\frac{a}{\frac{13}{3}a}=\frac{3}{13}\)

a: Ta có: \(2x^3-5x^2+8x-3=0\)

\(\Leftrightarrow2x^3-x^2-4x^2+2x+6x-3=0\)

=>2x-1=0

hay x=1/2

25 tháng 1 2016

Ta có:

\(ab-ac+bc-c^2=a.\left(b-c\right)+c.\left(b-c\right)=\left(a+c\right)\left(b-c\right)=-1\)

Tích trên là âm nên a+c và b-c trái dấu

Ư(1)={-1;1}

Như vậy các số a+c và b-c là 2 số đối nhau

TH1: Giả sử a=b => b+c= -(b-c)

=> b+c=-b+c

=> b= -b

=> b=0

=> a+c=0-c=-c

=> a= -c+c=0

Như vậy a=b và a cũng là số đối của b

TH2: a khác b

Có: a+c và b-c, một trong 2 là 1 và một trong 2 là -1

=> Tổng của a+c và b-c  là 1+(-1)=0

=> a+b=0

a khác b nên a, b là 2 số đối nhau.

Vậy a, b là 2 số đối nhau.

27 tháng 3 2016

Ta có:

\(f\left(x\right)=0\), do đó với mọi giá trị của x thì đa thức này bằng 0

Ta có:

\(f\left(1\right)=a.1^2+b.1+c=a+b+c=0\)

\(\Rightarrow a+b+c+3=0+3=3\)

Vậy  \(a+b+c=3\)

 

 

 

27 tháng 3 2016

a;b;c cho trc là sao?

4 tháng 3 2018

có sai đề ko

mk làm ko đc

4 tháng 3 2018

mk nghĩ đây là đề đúng

\(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\ge\dfrac{3}{2}\)

Ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\\\dfrac{b}{1+c^2}=b-\dfrac{bc^2}{1+c^2}\\\dfrac{c}{1+a^2}=c-\dfrac{ca^2}{1+a^2}\end{matrix}\right.\)

Áp dụng bđt AM-GM ta có:

\(\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\)

\(\Rightarrow a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab}{2}\) (1)

C/m tg tự ta có:

\(\left\{{}\begin{matrix}b-\dfrac{bc^2}{1+c^2}\ge b-\dfrac{bc}{2}\\c-\dfrac{ca^2}{1+a^2}\ge c-\dfrac{ac}{2}\end{matrix}\right.\) (2)

Chứng minh điều sau:\(ab+bc+ca\le3\)

Ta có:

\((a+b+c)^2\ge3(ab+bc+ca)\)

\(\Leftrightarrow9\ge3ab+3bc+3ca\)

\(\Leftrightarrow ab+bc+ca\le3\)

Từ (1) và (2)

\(\Rightarrow VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\)

\(ab+bc+ca\le3\)

Nên \(VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)

=> ĐPCM

23 tháng 3 2016

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\cdot\frac{a}{2009}=\frac{b}{2011}=\frac{a-b}{2009-2011}=\frac{a-b}{-2}\)

\(\cdot\frac{b}{2011}=\frac{c}{2013}=\frac{b-c}{2011-2013}=\frac{b-c}{-2}\)

\(\cdot\frac{a}{2009}=\frac{c}{2013}=\frac{a-c}{2009-2013}=\frac{a-c}{4}\)

\(\Rightarrow\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{4}\left(=\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}\right)\)

\(\Rightarrow\)\(\Rightarrow\frac{a-b}{-2}.\frac{b-c}{-2}=\left(\frac{a-c}{4}\right)^2\)

\(\Rightarrow\frac{\left(a-c\right)^2}{4^2}=\frac{\left(a-b\right)\left(b-c\right)}{4}\)

\(\Rightarrow\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)

Vậy \(\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)