Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{10^{2006}+53}{9}\)
\(=\frac{10^{2006}-10+63}{9}\)
\(=\frac{10\left(10^{2005}-1\right)+63}{9}\)
\(=\frac{10\left(10^{2005}-1\right)}{9}+7\)
Có 10 chia 9 dư 1
=> 102005 chia cho 9 có số dư là 12005 = 1
=> 102005 - 1 chia hết cho 9
\(\Rightarrow10\left(10^{2005}-1\right)⋮9\)
\(\Leftrightarrow\frac{10^{2006}+53}{9}\)là số tự nhiên. (ĐPCM)
10mu 2014+53 =100000.....0053[có 2012 so 0]
ta có:1+0+0+....+5+3 =9=9chia hết cho 9
=>10 mũ 2014 +53 chia hết cho 9
Vậy 2014 mũ [2014 +53 ] /9 là một số tự nhiên
102006 +53 = 1000.....00053 có tổng các chữ số = 1 +0+0+...+0+5+3 = 9 chia hết cho 9
Nên 102006 +53 chia hết cho 9. Hay nói cách khác kết quả của phép chia là 1 số tự nhiên
Không thể quy đồng mẫu số các phân số ở VT . Cần tách mỗi phân số thành hiệu 2 phân số . Nhận xét :
Do đó : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}=\frac{n-1}{n}\)
=> Bài toán đã được cm
chỉ cần chứng minh 10^2006 + 53 chia het cho 9
lớp 6 cũng làm được
Ta có
102006+53=1000.....0+53=100000....053
Để A là số tự nhiên
=> 102006+53 chia hết cho 9
=> 10000....053 chia hết cho 9
=> 1+0+0+0+.....+0+5+3 chia hết cho 9
=> 9 chia hết cho 9
=> A là số tự nhiên(đpcm)
Vậy bài toán đã được chứng minh
=