Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây nhé:
Chứng minh 2222^5555+5555^2222 chia hết cho 7 - Nguyễn ...
Chúc bạn học tốt!
2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7)
5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7)
vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm
Ta có 2222 + 4 \(⋮\) 7 => 2222 ≡ - 4 (mod 7) => 22225555 ≡ (- 4)5555(mod 7)
5555 - 4 \(⋮\)7 => 5555 ≡ 4 (mod 7) => 55552222 ≡ 42222 (mod 7)
=> 22225555 + 55552222 ≡ (- 4)5555 + 42222 (mod 7)
Mà 42222 = (-4)2222 => (- 4)5555 + 42222 = (-4)2222. 43333 + 42222
= (-4)2222. 43333 - (- 4)2222 = (-4)2222(43333 - 1) ≡ (43) - 1(mod 7) (1)
Ta lại có : 43 ≡ 1(mod 7) => 43 - 1= 63 7 => 43 - 1 ≡ 0 (mod 7) (2)
Nên (- 4)5555 + 42222 ≡ 0 (mod 7)
Từ (1) và (2) => 22225555 + 55552222 chia hết cho 7.
a, Ta có : 222 ≡ 1(mod 13) nên 222^333 ≡ 1 (mod 13)
Và 333^2 ≡ -1 (mod 13) nên 333^222 ≡ -1 (mod 13)
Cộng lại ta có:
222^333 + 333^222 ≡ 0 (mod 13) đpcm
b, 2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7)
5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7)
vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm
( tick đúng cho mink nha)