Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+....+\left(2n+1\right)=\frac{\left(2n+2\right)\left(n+1\right)}{2}=\left(n+1\right)^2\)
A = 1 + 3 + 5 + 7 + ... + 2n + 1
= \(\left[\left(2n+1-1\right):2+1\right].\left(\frac{2n+1+1}{2}\right)\)
= \(\left(n+1\right).\left(n+1\right)\)
= \(\left(n+1\right)^2\)
=> A là số chính phương (đpcm)
b) \(2+4+6+...+2n\)
= \(\left[\left(2n-2\right):2+1\right].\frac{2n+2}{2}\)
= \(n.\left(n+1\right)\)
= \(n^2+n\)
\(\Rightarrow\)B không là số chính phương
Giả sử
Vì d là ước dương của nên ( )
Suy ra
Suy ra :
là số chính phương.
Suy ra Vô lý vì
tại cậu hay chê người khác kém bây giờ có bài cần hỏi người ta cũng không thèm giúp cậu
Số số hạng là (2n-1+1):2=n(số)
Tổng là:
\(\dfrac{\left(2n-1+1\right)\cdot n}{2}=n^2\)