K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5n^3 + 15n^2 +10n

=(5n^3 + 15n^2+ 10n) 

= 30n^6 chia hết cho 30

28 tháng 9 2016

Ta có : 5n3+15n2+10n

=5n(n2+3n+2)

Ta thấy : 5 chia hết cho 30 

Hay : 5n chia hết cho 30

Vậy đpcm

\(5n^3+15n^2+10n\)

\(=x\left(x+1\right)\left(x+2\right)\)

Ta có : \(x;x+1;x+2\)là 3 số tự nhiên liên tiếp 

=> \(x\left(x+1\right)\left(x+2\right)\)chia hết cho 2 ; 3 ; 6 => \(x\left(x+1\right)\left(x+2\right)\)chia hết cho 30 ( đpcm )

21 tháng 7 2016

\(A=5n^3+15n^2+10n\)

\(=5n^3+5n^2+10n^2+10n\)

\(=5n^2\left(n+1\right)+10n\left(n+1\right)\)

\(=\left(n+1\right)\left(5n^2+10n\right)\)

\(=5n\left(n+1\right)\left(n+2\right)\)

do \(n;n+1;n+2\)là 3 số nguyên liên tiếp

\(\Rightarrow n;n+1;n+2\)chia hết cho 6

\(\Rightarrow A\)chia hết cho 5 và 6

mà 5 và 6 là 2 số nguyên tố cùng nhau

\(\Rightarrow A\)chia hết cho 30 (dpcm)

Chúc pn hk tốt ^-^

28 tháng 9 2016

mình cần câu hỏi này

23 tháng 10 2018

\(n^4-10n^2+9\)

\(=\)\(\left(n^4-n^2\right)-\left(9n^2-9\right)\)

\(=\)\(n^2\left(n^2-1\right)-9\left(n^2-1\right)\)

\(=\)\(\left(n^2-1\right)\left(n^2-9\right)\)

\(=\)\(\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Mà n lẻ nên n có dạng \(2k+1\) \(\left(k\inℤ\right)\)

\(=\)\(\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=\)\(2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)

\(=\)\(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

\(=\)\(15k\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)

Lại có : 

\(16k\left(k+1\right)\left(k-2\right)\left(k+2\right)⋮16\)

\(15\left(k-1\right)k\left(k+1\right)\left(k+2\right)⋮8,⋮3\)

\(\Rightarrow\)\(15\left(k-1\right)k\left(k+1\right)\left(k+2\right)⋮384\) ( đpcm ) 

Vậy \(n^4-10n^2+9⋮384\) với mọi n là số nguyên lẻ 

Chúc bạn học tốt ~ 

1 tháng 11 2021

Đặt P = n5 - 5n3 + 4n 

= n5 - n3 - 4n3 + 4n 

= n3(n2 - 1) - 4n(n2 - 1) 

= n3(n - 1)(n + 1) - 4n(n - 1)(n + 1) 

= (n - 1)n(n + 1)(n2 - 4) 

= (n - 2)(n - 1)n(n + 1)(n + 2) (tích 5 số nguyên liên tiếp) 

=> P \(⋮3;5;8\)

mà (3;5;8) = 1

=> P \(⋮3.5.8=120\)

13 tháng 10 2017

Ta có: n^5 - n = n (n^4 -1 ) 
=n (n^2-1)(n^2+1) 
=n(n-1)(n+1)(n^2 - 4 +5) 
=n(n-1)(n+1)(n^2-4) + n(n-1)(n+1)5 
= (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 
Vì (n-2)(n-1)n(n+1)(n+2) chia hết cho 30 
và n(n-1)(n+1)5 chia hết cho 30 
Nên (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 chia hết cho 30 
hay n^5-n chia hết cho 30

19 tháng 10 2017

\(Ta\)\(có\)\(5n^3+15n+10n=5n\left(n^2+3n+2\right)\)

                 \(=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]\)

                 \(=5n\left(n+1\right)\left(n+2\right)\)

\(Vì\)\(n\left(n+1\right)\left(n+2\right)⋮6\)\(và\) \(5⋮5\)

\(nên\) \(5n\left(n+1\right)\left(n+2\right)⋮\left(5.6\right)\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\left(đpcm\right)\)

21 tháng 10 2017

bạn giúp mk bài 2 nx

2 tháng 8 2018

a, Khai trển phương trình : 

(5n+2)^2 - 4 = (25n^2 + 2*2*5n + 2^2) - 4 = 25n^2 + 20n + 4 - 4 
= 25n^2 + 20n = 5n(5n + 4) 

--> (52+2)^2 - 4 = 5n(5n + 4) hiển nhiên chia hết cho 5. 

lưu ý : (a+b)^2 = a^2 + 2ab + b^2