Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a-11b+3c⋮17\)
=> \(19\left(a-11b+3c\right)⋮17\)
=> \(19a-209b+57c⋮17\)
=> ( 17a - 204b + 51c ) + ( 2a - 5b + 6c ) \(⋮\)17
=> 2a - 5b + 6c \(⋮\)17 ( do 17a - 204b + 51c \(⋮\)17 ) ( đpcm )
Ta có \(a-11b+3c⋮17\Rightarrow2a-22b+6c⋮17\)
Ta có \(17b⋮17\)
Nên \(2a-22b+6c+17b=2a-5b+6c⋮17\left(dpcm\right)\)
Ta có:\(\left(2a-5b+6c\right)+15\left(a-11b+3c\right)=17a-170b+51c⋮17\)
Mà \(15\left(a-11b+3c\right)⋮17\Rightarrow2a-5b+6c⋮17\left(đpcm\right)\)
Ta có a-11b+3c chia hết cho 17 => 2a+22b+6c cũng chia hết cho 17
Ta có 2a+22b+6c+2a-5b+6c=17b chia hết cho 17
=> 2a-5b+6c chia hết cho 17
Lời giải:
$2a-5b+6c\vdots 17$
$\Leftrightarrow 2a-5b-17b+6c\vdots 17$
$\Leftrightarrow 2a-22b+6c\vdots 17$
$\Leftrightarrow 2(a-11b+3c)\vdots 17$
$\Leftrightarrow a-11b+3c\vdots 17$ (do $(2,17)=1$)
Ta có đpcm.