Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2005\equiv-1\left(mod2006\right)\)
\(\Rightarrow2005^{2007}\equiv-1\left(mod2006\right)\)
Lại có: \(2007=1\left(mod2006\right)\)
\(\Rightarrow2007^{2005}\equiv1\left(mod2006\right)\)
\(\Rightarrow2005^{2007}+2007^{2005}\equiv0\left(mod2006\right)\)
Vậy \(2005^{2007}+2007^{2005}⋮2006\left(đpcm\right)\)
Bài 1 : a . Sử dụng công thúc sau : a^n - b^n = ( a-b ) ( a^n-1 + a^n-2 . b + .....+ b^n-1 )
=> A = 21^5 - 1 chia hết cho 20
=> A = 21^10 - 1 chia hết 400
=> A= 21^10 - 1 chia hết cho 200
a) 20062006 - 20062005 = 20062005 x 2006 - 20062005 = 20062005 x (2006 - 1) = 20062005 x 2005 chia hết cho 2005 => 20062006 - 20062005 chia hết cho 2005.
b) 79m+1 - 79m = 79m x 79 - 79m = 79m x (79 - 1) = 79m x 78 chia hết cho 78 => 79m+1 - 79m chia hết cho 78.
c) 257 + 513 = (52)7 + 513 = 514 + 513 = 512 x 5 x (5 + 1) = 512 x 5 x 6 = 512 x 30 chia hết cho 30 => 257 + 513 chia hết cho 30.
d) 106 - 57 = (2 x 5)6 - 57 = 26 x 56 - 57 = 56 x (26 - 5) = 56 x (64 - 5) = 56 x 49 chia hết cho 49 => 106 - 57 chia hết cho 49.
e) 710 - 79 - 78 = 78 x (72 - 7 - 1) = 78 x (49 - 7 - 1) = 78 x 41 chia hết cho 41 => 710 - 79 - 78 chia hết cho 41.
f)817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324 x 32 x (32 - 3 - 1) = 324 x 9 x 5 = 324 x 45 chia hết cho 45 => 817 - 279 - 913 chia hết cho 45.
Ta có:
20052007 + 20072005
= (20052007 + 12007) + (20072005 - 12005)
Vì 20052007 + 12007 luôn chia hết cho 2005 + 1 = 2006; 20072005 - 12005 luôn chia hết cho 2007 - 1 = 2006
=> (20052007 + 12007) + (20072005 - 12005) chia hết cho 2006
=> 20052007 + 20072005 chia hết cho 2006 (đpcm)
Xog
Ta có:
20052007 + 20072005
= (20052007 + 12007) + (20072005 - 12005)
Vì 20052007 + 12007 luôn chia hết cho 2005 + 1 = 2006; 20072005 - 12005 luôn chia hết cho 2007 - 1 = 2006
=> (20052007 + 12007) + (20072005 - 12005) chia hết cho 2006
=> 20052007 + 20072005 chia hết cho 2006 (đpcm)