K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2016

Ta có: 35=1(mod 17)

=>3535=135(mod 17)

=>3535=1 (mod 17)

Ta có: 52=1(mod 17)

=>5252 = 152(mod 17)

=>5252=1(mod 17)

=>3535+5252-2=1+1-2 (mod 17)

=>A=0 (mod 17)

=>A chia hết cho 17 (đpcm)

18 tháng 3 2018

Đồng dư thức là cái gì

19 tháng 7 2017

Ta có công thức : \(a^{2k+1}+b^{2k+1}⋮a+b\forall a;b\in Z;k\in N\)

Áp dụng ta đc :

a )\(2^{70}+3^{70}=\left(2^2\right)^{35}+\left(3^2\right)^{35}=4^{35}+9^{35}⋮4+9=13\) (đpcm)

b)\(3^{105}+4^{105}=\left(3^5\right)^{35}+\left(4^5\right)^{35}=243^{35}+1024^{35}⋮243+1024=1267=181.7⋮181\)(đpcm)

6 tháng 1 2016

............?

 

6 tháng 1 2016

11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n

=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12

Tacó: 133 . 11n chia hết 133;  144n – 11n chia hết (144 – 11)

 144n – 11n chia hết 133  11n + 1 + 122n + 1

13 tháng 3 2016

Ta có: 3= 1 (mod 5)

=>34n = 1n (mod 5)

=>34n.3 = 1.3 (mod 5)

=>34n+1 = 3 (mod 5)

=>34n+1+2 = 3+2 (mod 5)

=>P = 0 (mod 5)

Vậy P chia hết cho 5(đpcm)

 "=" là đồng dư nha

13 tháng 3 2016

ta có 34n+1+2=34n x 3 + 2= ...1 x 3 +2=...3+2=...5 chia hết cho 5

vậy p chia hết cho 5(đpcm)

24 tháng 1 2018

bài này vượt quá giới hạn của ta rồi

24 tháng 1 2018

Câu 1 cách làm:

Cậu có thể đưa ra chữ số tận cùng của mỗi lũy thừa, ví dụ như thế này để tính

2^(4k+1) có tận cùng là 2 nên 2^2009 có tận cùng là 2(2009=4.502+1)

15 tháng 11 2021

Đặt A = n^2019 - n^2016 + n^2013 - ... + n^3 - 1
A = n^2016( n^3 - 1 ) + ... + (n^3 - 1)
A = (n^2016 + n^2010 + ... + 1)(n^3 - 1) chia hết cho n^3 - 1

Đặt B = n^2016 - n^2013 + ... - n^3
B = n^2013( n^3 - 1 ) + ... + n^3( n^3 - 1 )
B = (n^2013 + n^2007 + ... + n^3)(n^3 - 1) chia hết cho n^3 - 1
Suy ra A + B chia hết cho n^3 - 1
Lại có A + B = n^2019 -1 nên n^2019 -1 chia hết cho n^3 - 1

15 tháng 11 2021
Bạn nhìn nhầm đề rồi kẻ bí ẩn