K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

Cho S = 3/1.4+3/4.7+3/7.10+.............. n thuỘc N* chỨng minh S<1?

3/(1.4) = (4-1)/(1.4) = 1-1/4
3/(4.7) = (7-4)/(4.7) = 1/4 - 1/7
......
3/n(n+3) = 1/n - 1/(n+3)
Cộng các đẳng thức trên ta đc
S= 1- 1/(n+3) <1, dpcm

13 tháng 4 2020

điều kiện n thuộc N hay khác 0 gì không bạn?

13 tháng 4 2020

khác 0 bạn ạ mk quên

15 tháng 5 2018

mình mới học lớp 5

có phải:

E= 1.4+4.7+7.10+...+(3n-2).(3n+1) (với n € N*)
 F=2.5+5.8+8.11+...+(3n+2).(3n+5) (với n € N)
 G=1.4+7.10+13.16+...+97.100

         nếu đúng k cho mình nha

2 tháng 8 2017

Ta có : \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{n\left(n+3\right)}=\frac{89}{270}\)

\(\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{n\left(n+3\right)}=\frac{267}{270}\)

\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}=\frac{267}{270}\)

\(\Rightarrow1-\frac{1}{n+3}=\frac{267}{270}\)

=> \(\frac{1}{n+3}=\frac{1}{90}\)

=> n + 3 = 90

=> n = 87 

2 tháng 8 2017

Nhân cả 2 vế với 3 ta được:

\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n\left(n+3\right)}=\frac{89}{90}.\)

Vậy tử số của các phân số trên đã bằng hiệu của 2 thừa số ở mẫu số.(Ngoại trừ P/S\(\frac{89}{90}.\))

=> ta được:

\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{n}-\frac{1}{n+3}=\frac{89}{90}.\)

Rút gọn hết ta được :

\(1-\frac{1}{n+3}=\frac{89}{90}\)

\(\frac{1}{n+3}=1-\frac{89}{90}\)

\(\frac{1}{n+3}=\frac{1}{90}.\)

Vì 1=1 => n+3=90

          n = 90-3

          n=87

Vậy n=87.

                                                                    Đ/S:87

15 tháng 4 2023

a) Gọi d là ƯCLN(n + 1; n + 2)

\(\Rightarrow n+1⋮d\)

\(n+2⋮d\)

\(\Rightarrow\left[\left(n+2\right)-\left(n+1\right)\right]⋮d\)

\(\Rightarrow\left(n+2-n-1\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{n+1}{n+2}\) là phân số tối giản

b) Gọi d là ƯCLN(n + 1; 3n + 4)

\(\Rightarrow n+1⋮d\) và \(3n+4⋮d\)

Do \(n+1⋮d\Rightarrow3n+3⋮d\)

\(\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)

\(\Rightarrow\left(3n+4-3n-3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{n+1}{3n+4}\) là phân số tối giản

c) Gọi d là ƯCLN(3n + 2; 5n + 3)

\(\Rightarrow3n+2⋮d\) và \(5n+3⋮d\)

Do \(3n+2⋮d\)

\(\Rightarrow5\left(3n+2\right)⋮d\)

\(\Rightarrow15n+10⋮d\)   (1)

Do \(5n+3⋮d\)

\(\Rightarrow3\left(5n+3\right)⋮d\)

\(\Rightarrow15n+9⋮d\)   (2)

Từ (1) và (2) \(\Rightarrow\left[\left(15n+10\right)-\left(15n+9\right)\right]⋮d\)

\(\Rightarrow\left(15n+10-15n-9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{3n+2}{5n+3}\) là phân số tối giản

d) Gọi d là ƯCLN(12n + 1; 30n + 2)

\(\Rightarrow12n+1⋮d\) và \(30n+2⋮d\)

Do \(12n+1⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)

\(\Rightarrow60n+5⋮d\)   (3)

Do \(30n+2⋮d\)

\(\Rightarrow2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+4⋮2\)   (4)

Từ (3 và (4) \(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\)

\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản

 

a: Gọi d=ƯCLN(n+1;n+2)

=>n+2-n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

b: Gọi d=ƯCLN(3n+4;n+1)

=>3n+4-3n-3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

c: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

d: Gọi d=ƯCLN(12n+1;30n+2)

=>60n+5-60n-4 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG