Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4+4^2+4^3+...+4^{81}=4\left(1+4+4^2\right)+...+4^{79}\left(1+4+4^2\right)\)
\(=21\left(4+...+4^{79}\right)⋮21\)vậy ta có đpcm
Các số có tận cùng 0 , 1 , 5 , 6 nâng lên lũy thừa nào ( khác 0 ) cũng có tận cùng bằng 0 , 1 , 5 , 6
6100 - 1 = .....6 - 1 = ......5 \(⋮\)5
Vậy 6100 - 1 chia hết cho 5
a) Ta có:
6^100- 1=...6-1=...5 chia hết cho 5
Mà 6^100 - 1 có tận cùng là 5 nên 6^100 -1 chia hết cho 5.
b)Ta thấy 21^20 - 11^10 = .....1 - ......1 = .......0
Mà 21^20 - 11^10 có tận cùng là chữ số 0 nên 21^20-11^10 chia hết cho 2 và 5
\(A=\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)
\(=21\left(1+...+4^{57}\right)⋮7\)
cứ tổng của 3 số liên tiếp được 1 số chia hết cho 7
=> (1+4+4^2)+(4^3+4^4+4^5)+.....+(4^57+4^58+4^59)(20 cặp số)
=> 21+ 4^3(1+4+4^2)+...+4^57(1+4+4^2)
......
Vì 21 chia hết cho 7=> 21.(........) chia hết cho 7=> A chia hết cho 7
đpcm
\(b,A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...\left(4^{57}+4^{58}+4^{59}\right)\\ A=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\\ A=\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\\ A=21\left(1+4^3+...+4^{57}\right)⋮7\)
a: \(\Leftrightarrow2x+1\in\left\{1;3\right\}\)
hay \(x\in\left\{0;1\right\}\)
D = 1 + 4 + 4 2 + 4 3 + . . . + 4 58 + 4 59
= 1 + 4 + 4 2 + 4 3 + 4 4 + 4 5 + ... + 4 57 + 4 58 + 4 59
= 1 + 4 + 4 2 + 4 3 . 1 + 4 + 4 2 + ... + 4 57 . 1 + 4 + 4 2
= 21 + 21 . 4 3 + . . . + 21 . 4 57 ⋮ 21
a/ A=20+21+22+.....+299+2100
=>2A=20.2+21.2+22.2+.....+299.2+2100.2=21+22+.....+2100+2101
=>2A-A=(21+22+.....+2100+2101)-(20+21+22+.....+299+2100)
=>A=2^101-1<B
b/C=2+22+23+......+2300
=>2C=21.2+22.2+.....+2299.2+2300.2=22+23+.....+2300+2301
=>2C-C=(22+23+.....+2300+2301)-(2+22+23+......+2300)
=>C=2^301-1<B