K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2022

S = 12 + 22 + 32 + ... + 20182

= 1.2 + 2.3 + 3.4 + ... + 2018.2019 - (1 + 2 + 3 + 4 + ... + 2018) 

\(\dfrac{2018.2019.2020}{3}-\dfrac{2018.2019}{2}=1009.673.367.11\)

=> S không là số chính phươn 

28 tháng 8 2020

A=\(11...1\) (2n chữ số 1)+11...1(n+1 số 1) +66.6 (n số ^) +8

=\(\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6\cdot11...1\) (n số 1) +8

=\(\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6\cdot\frac{10^n-1}{9}+8\)

=\(\frac{10^{2n}-1+10^n\cdot10-1+6\cdot10^n-6+72}{9}\)

=\(\frac{10^{2n}+16\cdot10^n+64}{9}\)

=\(\frac{\left(10^n+8\right)^2}{9}\)

=\(\left(\frac{\left(10^n+8\right)}{3}\right)^2\)

Ta thấy: 10+8 có tổng các chữ số =9

=> 10n+8 chia hết cho 3 => 10n +8 thuộc Z

=>\(\left(\frac{\left(10^n+8\right)}{3}\right)^2\)thuộc Z

=> A là số chính phương

28 tháng 11 2019

Từ hệ phương trình \(\Rightarrow\left(\sqrt{x-2018}-\sqrt{x-2019}\right)+\left(\sqrt{y-2018}-\sqrt{y-2019}\right)=2\)

Ta có: \(\sqrt{x-2018}-\sqrt{x-2019}\le\sqrt{\left(x-2018\right)-\left(x-2019\right)}=1\) Dấu = xảy ra khi và chỉ khi x = 2019

Tương tự: \(\sqrt{y-2018}-\sqrt{y-2019}\le1\)

Dấu = xảy ra khi và chỉ khi y = 2019

Nên: \(\left(\sqrt{x-2018}-\sqrt{x-2019}\right)+\left(\sqrt{y-2018}-\sqrt{y-2019}\right)\le2\)

Dấu = xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=2019\\y=2019\end{matrix}\right.\)

Kết luận nghiệm pt: \(\left\{{}\begin{matrix}x=2019\\y=2019\end{matrix}\right.\)

10 tháng 9 2017

Ta có công thức:

\(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Áp dụng vào bài toán:

\(1^2+2^2+...+100^2=\frac{100.101.201}{6}=338350\)không là số chính phương

12 tháng 10 2020

\(AB+4=\left(11...1+4\right)\left(11...1+8\right)+4=\) (có n+1 chữ số 1)

\(=11...1^2+12x11...1+36=\left(11...1+2x6x11...1+6^2\right)=\)

\(=\left(11...1+6\right)^2=11...7^2\) (có n chữ số 1)