Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 1 + 6 + 6^2 + .... + 6^9 .
= 1 + 6 . ( 1 + 6 + ..... + 6^8 ) .
Do đó A chia cho 6 dư 1
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp chia hết cho 3
tick minh nha
Có: 1020 = 10000...000 (trong đó số 10000...000 có 20 c/s 0)
=> 1020 có tổng của các c/s là 1
Mà 1 chia 3 và 9 đều dư 1
=> 1020 chia 3 và 9 dư 1.
30a+2b chia hết cho 13
=> (30a+2b)-(7a-21b) =30a+2b-7a+21b=23a+23b=23(a+b) chia hết cho 3
Vì 30a+2b chia hết cho 23 nên 7a-21b chia hết cho 23
\(\left(30a+2b\right)\) chia hết cho \(23\)
nên \(\left(30a+2b-23a-23b\right)\) cũng chia hết cho \(23\)
hay \(\left(7a-21b\right)\) chia hết cho \(23\)
Bài giải
Theo bài ra, ta có: a+b chia hết cho 11 và a^2+b^2 chia hết cho 11
a^2+b^2 = a.a+b.b chia hết cho 11 => a chia hết cho 11, b chia hết cho 11 => a^3+a^3=a.a.a+b.b.b cũng chia hết cho 11
K CHO MÌNH NHÉ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!