K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

vớ vẩn , đã tận cùng là hai rồi lại còn tận cùng là 5 , vô lý , xem lại đề đi

ok

ok

ok

26 tháng 11 2019

vô lí thật.đề sai r bn

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

1.

Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$

Đặt \(a=\overline{A5}\)

\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)

\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$

--------------------

2.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.

Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)

Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))

Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

3.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.

Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)

Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$

$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))

Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.

-----------------

4.

Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$

Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)

\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)

Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)

27 tháng 11 2019

Gọi số chính phương là A5 và \(\sqrt{\overline{A5}}=\overline{b5}\)

\(\Rightarrow\overline{A5}=\overline{b5}.\overline{b5}=\left(10.b+5\right).\left(10.b+5\right)=100.b^2+100.b+25=\)

\(=100.\left(b^2+b\right)+25\)

Đặt \(b^2+b=c\)

\(\Rightarrow\overline{A5}=100.c+25=\overline{c25}\) (dpcm)

Gọi số đó là a

Ta có:

( 10a + 5 )2 = ( 10a )2 + 2 ( 10a . 5 ) + 52

Từ lời giải của bạn Khôi thì:

a ( a + 1 ) là hai số liên tiếp

=> ĐPCM

P/s tham khảo nha

21 tháng 11 2017

                              Giải : 

Xét :

\(\left(10a+5\right)^2=100a\left(a+1\right)+25\)

Vì \(a\left(a+1\right)\)chẵn 

\(\Rightarrow\) Ta có \(ĐPCM\)

                         

16 tháng 12 2015

chtt

ai tick mk tròn 170 điểm đi