Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình thêm 1 vài bước nữa , thiếu rồi xin lỗi bạn nhé !
\(\frac{2\left(x+\sqrt{x}\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}=\frac{2\left[\sqrt{x}\left(\sqrt{x}+1\right)\right]^2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}=\frac{2x.\left(\sqrt{x}+1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}\)
\(=\frac{2x}{x-1}\)(gọn rồi đấy)
không biết làm gì ngoài nhân chéo :((
\(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\left(ĐKXĐ:x\ge0;x\ne1\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-1\right)-\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}\left(x+\sqrt{x}\right)\)
\(=\frac{x\sqrt{x}-\sqrt{x}+2x-2-x\sqrt{x}-2x-\sqrt{x}+2x+4\sqrt{x}+2}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}.\left(x+\sqrt{x}\right)\)
\(=\frac{x\sqrt{x}-x\sqrt{x}-\sqrt{x}-\sqrt{x}+4\sqrt{x}+2x-2x+2x-2+2}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}.\left(x+\sqrt{x}\right)\)
\(=\frac{2\left(x+\sqrt{x}\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}\)
xong nhé :v bạn làm được tiếp thì làm
\(=\frac{x-1}{2\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{x-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1-\sqrt{x}-1\right)\left(\sqrt{x}-1+\sqrt{x}+1\right)}{2\sqrt{x}}\)
\(=\frac{-2.2\sqrt{x}}{2}\)
\(=-2\sqrt{x}\)
Thank bạn bài vừa rồi đã k cho mk^^
\(B=\frac{-2a\sqrt{a}+2a^2}{\left(\sqrt{a}-\right)\left(a-1\right)}\)
\(C=-x\sqrt{x}+x+\sqrt{x}-1\)
\(D=x-\sqrt{x}+1\)
a) đk : \(x\ge0\) ; \(x\ne1\)
A=\(\left(\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}-\frac{x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(=\left(\frac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) \(=\frac{1-\sqrt{x}}{x+1}\)
b) đk : \(x\ne0;x\ne1\)
B=\(\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\left(\frac{-2\sqrt{x}}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\frac{-4x}{\left(x-1\right)^3}\)
a) Ta có: \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)
\(=\left(\frac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\cdot\left(\frac{1}{1+\sqrt{x}}\right)^2\)
\(=\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{-\left(x-1\right)\left(-1-\sqrt{x}\right)}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{\left(1+\sqrt{x}\right)\cdot\left(-1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{-1\cdot\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=-1\)