Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Vì 12n+1 là số lẻ
và 30n+2 là số chẵn
nên 12n+1/30n+2 là phân số tối giản
Gọi d là \(UCLN\left(3n+1;5n+2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3n+1\right)⋮d\\\left(5n+2\right)⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}15n+5⋮d\\15n+6⋮d\end{matrix}\right.\)
\(\Rightarrow\left(15n+6\right)-\left(15n+5\right)⋮d\Rightarrow1⋮d\left(đpcm\right)\)
a/ Gọi ước chung lớn nhất của \(12n+1\) và \(30n+2\) là \(d\in Z^+\)
\(\Rightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(60n+5\right)⋮d\\\left(60n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\)\(12n+1\) và \(30n+2\) nguyên tố cùng nhau \(\Rightarrow\frac{12n+1}{30n+2}\) tối giản
b/ \(n=0\) thì \(\frac{0}{1}\) có coi là tối giản không nhỉ? Quên mất rồi, mất căn bản trầm trọng quá
Gọi d là ước chung lớn nhất \(n^3+2n\) và \(n^4+3n^2+1\)
\(\Rightarrow\left\{{}\begin{matrix}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\) \(\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^2-1⋮d\Rightarrow n^3+2n-n\left(n^2-1\right)⋮d\Rightarrow n⋮d\) \(\forall n\Rightarrow d=1\)
\(\Rightarrow\) tử và mẫu nguyên tố cùng nhau \(\Rightarrow\) phân số là tối giản
c/ Gọi ước chung lớn nhất của 2n+1 và \(2n^2-1=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n^2-1⋮d\end{matrix}\right.\) \(\Rightarrow n\left(2n+1\right)-\left(2n^2-1\right)⋮d\Rightarrow n+1⋮d\)
\(\Rightarrow2\left(n+1\right)-\left(2n+1\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(2n+1\) và \(2n^2-1\) nguyên tố cùng nhau \(\Rightarrow\) phân số tối giản
\(12n+1\)
Gọi d là ước chung của n^3 + 2n và n^4 + 3n^2 + 1. Ta có:
n^3 + 2n chia hết cho d => n(n^3 + 2n) chia hết cho d => n^4 + 2n^2 chia hết cho d (1)
n^4 + 3n^2 + 1 -(n^4 + 2n^2) = n^2 + 1 chia hết cho d => (n^2 + 1)^2 = n^4 + 2n^2 + 1 chia hết cho d (2)
Từ (1) và (2) suy ra :
(n^4 + 2n^2 + 1)- (n^4 + 2n^2) chia hết cho d => 1 chia hết cho d => d=+-1
Vậy phân số trên tối giản vì mẫu và tử có ước chung là +-1
Phân số trên sẽ tối giản vì không có bất kì các số nào có thể rút gọn với nhau .
Nếu như có thể thì khi ta cộng lại cũng không thể , vì đang rút được ta cộng một vào bất kì ( mẫu / tử ) đều khiến phép tính không thể rút gọn tiếp được nữa .
Vậy không thể rút gọn và phân số này đã tối giản
Hướng dẫn giải:
Gọi d là ƯCLN của 12n + 1 và 30n + 2
⇒ (12n + 1)⋮ d và (30n + 2)⋮ d
⇒ [5(12n + 1) - 2(30n + 2)] ⋮ d
⇒ 1 ⋮ d, với ∀n ∈ N
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Vì 12n+1 là số lẻ
và 30n+2 là số chẵn
nên 12n+1 và 30n+2 là hai số nguyên tố cùng nhau
hay 12n+1/30n+2 là phân số tối giản