Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c
= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21
( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )
=> 400a + 40b + 4c chia hết cho 21
=> 4 ( 100a + 10b + c ) chia hết cho 21
=> 100a + 10b + c chia hết cho 21
=> abc chia hết cho 21
Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21
Ta có A= \(2+2^2+2^3+....+2^{21}\)
=> A= \(2+2^2\left(2^3+2^4\right)+2^5\left(2^3+2^4\right)+......+2^{18}\left(2^3+2^4\right)+2^{21}\)
=> A=\(2+2^2.14+2^5.14+.....+2^{18}.14+2^{21}\)
Vì trong A có thừa số 14 nên A chia hết cho 14
A=(2+22+23)+(24+25+26)+...+(219+220+221)=14+23(2+22+23)+...+218(2+22+23)
A=14+23.14+...+218.14=14(1+23+26+...+215+218) chia hết cho 14
50+51+52+53+...+52010+52011
= 1+5+52+53+...+52010+52011
=(1+5)+(52+53)+...+(52010+52011)
= (1+5)+52(1+5)+...+52010(1+5)
= (1+5)(1+52+...+52010)
= 6.(1+52+...+52010) chia hết cho 6
=> đpcm
\(7⋮\left(2n-3\right)\Leftrightarrow2n-3\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow2n\in\left\{-4,2,4,10\right\}\Leftrightarrow n\in\left\{-2,1,2,5\right\}\).
b ) B = 5 + 52 + ... + 57 . 58
= ( 5 + 52 ) + ... + ( 57 . 58 )
= 5 . ( 1 + 5 ) + ... + 57 . ( 1 + 5 )
= 5 . 6 + ... + 57 . 6
= 6 . ( 5 + ... + 57 ) \(⋮\)6
a ) 53! - 51!
= 51! . ( 52 . 53 - 1 )
= 51! . 2755
mà 2755 \(⋮\)29 => 51! . 2755
Vậy 53! - 51! \(⋮\)29
Để A chia hết cho 3 thì:
\(1212+15+21+x⋮3\)
Mà: 1212,15,21 đều chia hết cho 3 nên x cũng chia hết cho 3.
\(\Rightarrow x\in B\left(3\right)\)
Như vậy để x không chia hết cho 3 thì:
\(\Rightarrow x\in B\left(3k+1\right),x\in\left(3k+2\right)\)
Ta có : \(7^{21}+3\)= \(\left(7^4\right)^5\cdot7+3\)= \(2401^5\cdot7+3\)
Do số có tận cùng là 1 thi lũy thừa bậc mấy cũng có tận cùng là 1 nên \(2401^5\)có tận cùng là 1
=> \(2401^5\cdot7\)có tận cùng là 7
=> \(2401^5\cdot7+3\)có tận cùng là 10
=> \(2401^5\cdot7+3\)chia hết cho 10
hay \(7^{21}+3\)chia hết cho 10
nhớ nha
Cảm ơn bạn