Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,n=1 thì tm
n=2 thì ko tm
n=3 thì tm
n=4 thì ko tm
n >= 5 thì n! chia hết cho 2 và 5 => n! có tận cùng là 0
Mà 1!+2!+3!+4! = 33
=> 1!+2!+3!+4!+.....+n! có tận cùng là 3 nên ko chính phương
Vậy n thuộc {1;3}
k mk nha
1)
987 = 9.102 + 8.101 + 7.100
2564 = 2.103 + 5.102 + 6.101 + 4.100
abcde = a.104 + b.103 + c.102 + d.101 + e.100
2)
a) n = 1 b ) n = 0
3)
a) 13 + 23 = 1 + 8 = 9 = 32
b) 13 + 23 + 33 = 1 + 8 + 27 = 36 = 62
c ) 13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102
ta có: 22499...9 (n -2 c/s 9) chia 3 dư 2 (do 2+2+4+9+9+....+9 = 8+9.(n-2) dư 2) (1)
100...09(n c/s 0) chia 3 dư 1 (do 1+0+0+...+0+9 =10 dư 1) (2)
từ (1),(2) suy ra 22499...9 (n -2 c/s 9) x 100....009 (n c/s 0) chia 3 dư 2 hay A có dạng 3k+2 mà SCP ko có dạng 3k+2 nên A ko là SCP (đpcm)
Giả sử
Vì d là ước dương của nên ( )
Suy ra
Suy ra :
là số chính phương.
Suy ra Vô lý vì
ta có:
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0
do 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên 1!+2!+....+n! không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Ta có A=22499...9100...09(n€N*)
A=224.10^2n+(10^n-2 -1).10^n+2 +9+10^n+1
A=224.10^2n+10^2n-10^n+2+10^n+1+9
A=225.10^2n-10^n.100+10^n.10+9
A=(10^n.15)^2-2.(10^n.15).3+3^2
A=[(10^n.15)-3]^2
Vì n€N* nên A là SCP(đpcm)
Chúc bạn học giỏi nha
22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9
=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9
=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9
=(10n.15−3)2=(10n.15−3)2
Vậy A là Số Chính Phương (đpcm)