Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q = 6x^2 - 2x - 6x^2 - 6x - 3 + 8x
Q = ( 6x^2 - 6 x^2 ) - ( 2x + 6x ) + 8x - 3
Q = -8x + 8x - 3
Q = 0 - 3
Q = -3
`@` `\text {Ans}`
`\downarrow`
\((6x-5)(x+8)-(3x-1)(2x+3)-9(4x-3)\)
`= 6x(x+8) - 5(x+8) - [ 3x(2x+3) - 2x - 3] - 36x + 27`
`= 6x^2 + 48x - 5x - 40 - (6x^2 + 9x - 2x - 3) - 36x + 27`
`= 6x^2 + 48x - 5x - 40 - (6x^2 + 7x - 3) - 36x + 27`
`= 6x^2 + 48x - 5x - 40 - 6x^2 - 7x + 3 - 36x + 27`
`= (6x^2 - 6x^2) + (48x - 5x - 7x - 36x) + (-40 + 3 + 27)`
`= 0 + 0 - 10`
`= - 10`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến
a) \(\left(x+2\right)\left(x^2+2x+4\right)-x\left(x^2+1\right)+x+2\)
\(=x^3+8-x^3-x+x+2\)
\(=10\)
Vậy giá trị của bt không phụ thuộc vào gt của biến
b) \(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+23x-55-6x^2-23x-21\)
\(=-76\)
Vậy gt của bt không phụ thuộc vào gt của biến
`@` `\text {Ans}`
`\downarrow`
`2,`
`(x^3 - 2x^2 + 2) - (3x^3 + 4x^2 - 3) + (2x^3 + 6x^2)`
`= x^3 - 2x^2 + 2 - 3x^3 - 4x^2 + 3 + 2x^3 + 6x^2`
`= (x^3 - 3x^3 + 2x^3) + (-2x^2 - 4x^2 + 6x^2) + (2+3)`
`= 0 + 0 + 5`
`= 5`
Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.
Bn phá ngoặc ra rồi tính như bình thường, biểu thức = 5
=> biểu thức không phụ thuộc vào giá trị biến ( đpcm )
a. x ( 5x - 3 ) - x2 ( x - 1 ) + x ( x2 - 6x ) - 10 + 3x
= 5x2 - 3x - x3 + x2 + x3 - 6x2 - 10 + 3x
= ( - x3 + x3 ) + ( 5x2 + x2 - 6x2 ) + ( - 3x + 3x ) - 10
= - 10
=> Giá trị của bthuc trên không phụ thuộc vào biến
b. x ( x2 + x + 1 ) - x2 ( x + 1 ) - x + 5
= x3 + x2 + x - x3 - x2 - x + 5
= ( x3 - x3 ) + ( x2 - x2 ) + ( x - x ) + 5
= 5
=> Giá trị của bthuc trên không phụ thuộc vào biến
`@` `\text {Ans}`
`\downarrow`
`(-x^4 - x^3) + (x^4 + 2x^3 + 5x^2 + 3x) + (-5x^2 - 3x - x^3)`
`= -x^4 - x^3 + x^4 + 2x^3 + 5x^2 + 3x - 5x^2 - 3x - x^3`
`= (-x^4+x^4) + (-x^3 + 2x^3 - x^3) + (5x^2 - 5x^2) + (3x - 3x)`
`= 0 + 0 + 0 + 0`
`= 0`
Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.
`@` `\text {Kaizuu lv uuu}`
(3x-1)(2x+7)-(x-1)(6x-5)-(18x-12)
=6x2-2x+21x-7-(6x2-5x-6x+5)-18x+12
=6x2-2x+21x-7-6x2+5x+6x-5-18x+12
=12x