Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: Với x = -5
→ f(-5) = (-5)2 + 4.(-5) - 5
= 25 + ( -20 ) - 5
= 5 - 5 = 0
Vì f(-5) = 0 nên x = -5 là nghiệm của đa thức f(x)
f(x) = 2x2 + 6x +10 = 2(x2 + 3x + 5) = 2(x+1,5)2 + 5,5 >= 5,5 > 0
Vậy f(x) = 2x2 + 6x +10 vô nghiệm
Bài 1 :
( 4x - 3 ) - ( x + 5 ) = 3 . ( 10 - x )
<=> 4x - 3 - x - 5 = 30 - 3x
=> 3x - 8 = 30 - 3x
=> 3x + 3x = 30 + 8
=> 6x = 38
=> x = \(\dfrac{19}{3}\)
Vậy x = \(\dfrac{19}{3}\)
Bài 2 :
Ta có : - f ( x ) = ( x - 1 ) . ( x + 2 ) = 0
=> x - 1 = 0 => x = 1
x + 2 = 0 => x = -2
- g ( 1 ) = 13 + a . 12 + b . 1 + 2 = 0
<=> 1 + a + b + 2 = 0
=> a = - 3 - b
- g ( -2 ) = ( -2 )3 + a . ( -2 )2 + b . ( -2 ) + 2 = 0
<=> - 8 + 4a - 2b + 2 = 0
hay -8 + 4 . ( -3 - b ) - 2b + 2 = 0
<=> -8 - 12 - 4b - 2b + 2 = 0
=> -18 - 6b = 0
=> b = -3
=> a = 0
Vậy a = 0 ; b= -3
\(f\left(x\right)=9x^2+6x+2\)
\(=\left(9x^2+3x\right)+\left(3x+1\right)+1\)
\(=3x\left(3x+1\right)+\left(3x+1\right)+1\)
\(=\left(3x+1\right)\left(3x+1\right)+1\)
\(=\left(3x+1\right)^2+1\) \(>0\)
\(\Rightarrow\)đa thức vô nghiệm
b) \(g\left(x\right)=x^4-4x^2+2013\)
\(=\left(x^4-2x^2\right)-\left(2x^2-4\right)+2009\)
\(=x^2\left(x^2-2\right)-2\left(x^2-2\right)+2009\)
\(=\left(x^2-2\right)^2+2009\) \(>0\)
\(\Rightarrow\)đa thức vô nghiệm
Để f(x) vô ngiệm => f(x) ><0 với mọi x
Ta có x^2+4x+5=(x^2+4x+4)+1=(x+2)2+1
Vì (x+2)2 >= 0 với mọi x
=> (x+2)2+1 >0 với mọi x
vậy f(x) vô nghiệm
Cho tam giác ABC, M là trung điểm của BC, biết góc BAM>góc CAM. So sánh góc B và góc C