Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
a: \(49^2=2401\)
b: \(51^2=2601\)
c: \(99\cdot100=9900\)
Bài 4: Chứng minh các hằng đẳng thức sau
a. x2+y2=(x+ y)2- 2xy
biến đổi vế phải ta được:
(x+ y)2- 2xy
=x2+2xy+y2-2xy
=x2+y2 bằng vế phải
=> biểu thức đã được chứng minh
b. (a+b)2-(a-b)(a+b)= 2b(a+b)
biến đổi vế trái ta được:
(a+b)2-(a-b)(a+b)
=a2+2ab+b2-(a2-b2)
=a2+2ab+b2-a2+b2
=2ab+2b2
=2b(a+b)
a) Biến đổi vế trái ta có:
\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2\left(a^2+b^2\right)=VP\)
Vậy đẳng thức trên được chứng minh
b) Biến đổi vế trái ta có:
\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=VP\)
Vậy đẳng thức trên được chứng minh
c)Biến đổi vế trái ta có:
\(\left(x+y\right)^4+x^4+y^4\)
\(=x^4+y^4+4x^3y+6x^2y^2+4xy^3+x^4+y^4\)
\(=2\left(x^4+y^4+2x^2y^2\right)+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2\left(x^2+y^2\right)^2+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2\left[\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right]\)
\(=2\left(x^2+xy+y^2\right)^2=VP\)
Vậy đẳng thức trên được chứng minh
Toán lớp 7 chưa học Hằng đẳng thức đâu Nguyen Hai Dang
uk quên