K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

10^n +18n - 1=10^n-1+18n=99..9(n chữ số 9)+18n 
=9(11...1(n chữ số 9)+2n) 
Xét 11...1(n chữ số 9)+2n=11...1- n+3n 
Dễ thấy tổng các chữ số của 11..1(n chữ số 1) là n 
=>11...1- n chia hết cho 3 
=>11...1- n+3n chia hết cho 3 
=>10^n +18n - 1 chia het cho 27

16 tháng 1 2018

Link nè https://olm.vn/hoi-dap/question/24003.html

18 tháng 12 2017

b)  Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

c)  10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.

6 tháng 9 2016

Nhân S với 9 
9S = 9 + 99 + 999 +.... + 99..99 
9S = 10 - 1 + 100 - 1 + 100..00 -1 (với n chữ số 0) 
9S = 10 + 100 + ... +100.. 00 -n 
9S = 1+ 10 +100 + ... + 100..00 - (n+1) 
9S = 111...11 - (n+1) (n+1chữ số 1 trong só 111..11) 
S = (111..11 - (n+1))/9.

6 tháng 9 2016

có 1000 số 1

28 tháng 12 2016

Ta có:102016-1=100...0-1 (có 2016 số 0)=99..9(có 2015 chữ số 9)

Tổng chữ số của số trên là 9x2015 \(⋮9\)

nên 102016-1\(⋮9\)

20 tháng 7 2015

chính xác 100/100

 

d) \(10^n+72n-1\)\(=100...0-1+72n\)

=\(999...9-9n+81n\)

     n chữ số 9

=\(9.\left(111...1-n\right)+81n\)

VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9

mà 81n chia hết 9 => 10n + 72n -1 chia hết 9

b) \(10^n+18n-1\)

<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)

          n

<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)

             n

<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)

               n

<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)

<=> \(9.9k+27n\)chia hết \(27\)

<=> \(81k+27n\)chia hết \(27\)

27 tháng 1 2017

ai giải giúp mình đi