Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
`a)1/2 . [-3]/4 . [-5]/8 . [-8]/9=[1. (-3).(-5).(-8)]/[2.4.8.3.3]=[-5]/[2.4.3]=[-5]/24`
`b)(2/[1.3]+2/[3.5]+2/[5.7]).([10.13]/3-[2^2]/3-[5^3]/3)`
`=(1-1/3+1/3-1/5+1/5-1/7).[10.13-2^2-5^3]/3`
`=(1-1/7).[130-4-125]/3`
`=6/7 . 1/3 = 2/7`
____________________________________________________
`8/9+1/9 . 2/9+1/9 . 7/9`
`=8/9+1/9.(2/9+7/9)`
`=8/9+1/9 . 9/9`
`=8/9+1/9=9/9=1`
a) \(\dfrac{1}{2}\cdot\dfrac{-3}{4}\cdot\dfrac{-5}{8}\cdot\dfrac{-8}{9}\)
\(=\dfrac{1\cdot\left(-3\right)\cdot\left(-5\right)\cdot\left(-8\right)}{2\cdot4\cdot8\cdot9}\)
\(=-\dfrac{5}{24}\)
b) \(\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}\right)\cdot\left(\dfrac{10\cdot13}{3}-\dfrac{2^2}{3}-\dfrac{5^3}{3}\right)\)
\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}\right)\cdot\left(\dfrac{130}{3}-\dfrac{4}{3}-\dfrac{125}{3}\right)\)
\(=\left(1-\dfrac{1}{7}\right)\cdot\dfrac{1}{3}\)
\(=\dfrac{6}{7}\cdot\dfrac{1}{3}\)
\(=\dfrac{2}{7}\)
\(\dfrac{8}{9}+\dfrac{1}{9}\cdot\dfrac{2}{9}+\dfrac{1}{9}\cdot\dfrac{7}{9}\)
\(=\dfrac{8}{9}+\dfrac{2}{81}+\dfrac{7}{81}\)
\(=\dfrac{72}{81}+\dfrac{2}{81}+\dfrac{7}{81}\)
\(=1\)
a: \(A=\dfrac{7}{12}+\dfrac{5}{72}-\dfrac{11}{36}=\dfrac{42}{72}+\dfrac{5}{72}-\dfrac{22}{72}=\dfrac{25}{72}\)
b: \(B=\dfrac{8+5}{10}:\dfrac{-5}{13}=\dfrac{13}{10}\cdot\dfrac{13}{-5}=-\dfrac{169}{100}\)
c: \(C=\left(\dfrac{88}{132}-\dfrac{33}{132}+\dfrac{60}{132}\right):\left(\dfrac{55}{132}+\dfrac{132}{132}-\dfrac{84}{132}\right)\)
\(=\dfrac{88-33+60}{55+132-84}=\dfrac{115}{103}\)
a: \(=\dfrac{-6}{11}:\dfrac{3\cdot11}{4\cdot5}=\dfrac{-6}{11}\cdot\dfrac{20}{33}=\dfrac{-2}{11}\cdot\dfrac{20}{11}=\dfrac{-40}{121}\)
b: \(=\dfrac{7}{12}+\dfrac{5}{72}-\dfrac{11}{36}=\dfrac{42}{72}+\dfrac{5}{72}-\dfrac{22}{72}=\dfrac{25}{72}\)
c: \(=\dfrac{13}{10}:\dfrac{-5}{13}=\dfrac{-169}{50}\)
a) Ta có
S = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}\)
2S = \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{n.\left(n+1\right).\left(n+2\right)}\)
2S = \(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)2S = \(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)
S = \(\dfrac{1}{4}-\dfrac{1}{\left(n+1\right).\left(n+2\right):2}\)
b) A = \(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{99}\)
A = \(2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
A = \(2-\dfrac{1}{99}\)
A = \(\dfrac{197}{99}\)
c) Ta có
B = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
B = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
B = \(1-\dfrac{1}{100}\)
B = \(\dfrac{99}{100}\)
d) Ta có
C = \(\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)
C = \(1+\left(1+\dfrac{98}{2}\right)+\left(1+\dfrac{97}{3}\right)+...+\left(1+\dfrac{1}{99}\right)\)
C = \(1+50+\dfrac{100}{3}+...+\dfrac{100}{99}\)
C = 51 + 100(\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\))
Đặt D = \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\)
D = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
D = \(\dfrac{1}{2}-\dfrac{1}{99}\)
D = \(\dfrac{97}{198}\)
=> C = 51 + 100.\(\dfrac{97}{198}\)
C = 51 + \(\dfrac{4850}{99}\)
C = \(\dfrac{9899}{99}\)
Đây là bài làm của mình sai thì nx nha
3/ \(2\left(x-3\right)-3\left(1-2x\right)=4+4\left(1-x\right)\)
\(\Leftrightarrow2x-6-3+6x=4+4-4x\)
\(\Leftrightarrow8x-9=8-4x\)
\(\Leftrightarrow8x+4x=8+9\)
\(\Leftrightarrow12x=17\)
\(\Leftrightarrow x=\dfrac{17}{12}\)
Vậy \(x=\dfrac{17}{12}\)
4/ \(\dfrac{x-2}{2}-\dfrac{1+x}{3}=\dfrac{4-3x}{4}-1\)
\(\Leftrightarrow6\left(x-2\right)-4\left(1+x\right)=3\left(4-3x\right)-12\)
\(\Leftrightarrow6x-12-4-4x=12-9x-12\)
\(\Leftrightarrow6x-4-4x=12-9x\)
\(\Leftrightarrow2x-4=12-9x\)
\(\Leftrightarrow2x+9x=12+4\)
\(\Leftrightarrow11x=16\)
\(\Leftrightarrow x=\dfrac{16}{11}\)
Vậy \(x=\dfrac{16}{11}\)
11: \(=\left(1+\dfrac{1}{98}-1-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{98}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\right)=0\)
12: \(=\dfrac{7}{17}+\dfrac{10}{17}\cdot\left(\dfrac{-6+5}{10}\right)^2\)
\(=\dfrac{7}{17}+\dfrac{10}{17}\cdot\dfrac{1}{100}=\dfrac{7}{17}+\dfrac{1}{170}=\dfrac{71}{170}\)
a)\(\left(4-\dfrac{12}{5}\right).\dfrac{25}{8}-\dfrac{2}{5}:\dfrac{-4}{25}\)
\(=\left(\dfrac{4}{1}-\dfrac{12}{5}\right).\dfrac{25}{8}-\dfrac{2}{5}:\dfrac{-4}{25}\)
\(=\left(\dfrac{20}{5}-\dfrac{12}{5}\right).\dfrac{25}{8}-\dfrac{2}{5}:\dfrac{-4}{25}\)
\(=\dfrac{8}{5}.\dfrac{25}{8}-\dfrac{2}{5}:\dfrac{-4}{25}\)
\(=1-\dfrac{2}{5}.\dfrac{25}{-4}\)
\(=1-\dfrac{-5}{2}\)
\(=\dfrac{2}{2}-\dfrac{-5}{2}\)
\(=\dfrac{7}{2}\)
dài quá nên mik sẽ giải lần lượt mỗi câu trả lời là một câu nhá bạn!!
Giải:
a)(4-12/5).25/8-2/5:-4/25
=8/5.25/8-(-5/2)
=5+5/2
=15/2
b)(-5/24+3/4-7/12):(-5/16)
=-1/24:(-5/16)
=2/15
c)6/7+5/4:(-5)-(-1/28).(-2)2
=6/7+(-1/4)-(-1/28).4
=6/7-1/4-(-1/7)
=6/7-1/4+1/7
=(6/7+1/7)-1/4
=1-1/4
=3/4
Chúc bạn học tốt!
Xét C = \(\left(\dfrac{4}{1.3}+\dfrac{4}{3.5}+...+\dfrac{4}{97.99}\right)-\left(\dfrac{5}{11.12}+\dfrac{5}{12.13}+...+\dfrac{5}{98.99}\right)\)
Đặt A = \(\dfrac{4}{1.3}+\dfrac{4}{3.5}+...+\dfrac{4}{97.99}\)
B = \(\dfrac{5}{11.12}+\dfrac{5}{12.13}+...+\dfrac{5}{98.99}\)
=> C = A - B
Ta có : A = \(\dfrac{4}{1.3}+\dfrac{4}{3.5}+...+\dfrac{4}{97.99}\)
= 2 \(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{97.99}\right)\)
= \(2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
= \(2\left(1-\dfrac{1}{99}\right)=\dfrac{2.98}{99}=\dfrac{196}{99}\)
Ta có B = \(\dfrac{5}{11.12}+\dfrac{5}{12.13}+...+\dfrac{5}{98.99}\)
= \(5\left(\dfrac{1}{11.12}+\dfrac{1}{12.13}+...+\dfrac{1}{98.99}\right)\)
= \(5\left(\dfrac{1}{11}-\dfrac{1}{99}\right)=\dfrac{8.5}{99}=\dfrac{40}{99}\)
=> C = A - B = \(\dfrac{196-40}{99}=\dfrac{156}{99}=\dfrac{52}{33}\)
\(C=\dfrac{4}{1.3}+\dfrac{4}{3.5}+.....+\dfrac{4}{97.99}-\dfrac{5}{11.12}-\dfrac{5}{12.13}-.....-\dfrac{5}{98.99}\)
\(C=\left(\dfrac{4}{1.3}+\dfrac{4}{3.5}+.....+\dfrac{4}{97.99}\right)-\left(\dfrac{5}{11.12}+\dfrac{5}{12.13}+.....+\dfrac{5}{98.99}\right)\)\(C=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+.....+\dfrac{1}{97}-\dfrac{1}{99}\right)-5\left(\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+.....+\dfrac{1}{98}-\dfrac{1}{99}\right)\)\(C=2\left(1-\dfrac{1}{99}\right)-5\left(\dfrac{1}{11}-\dfrac{1}{99}\right)\)
\(C=2.\dfrac{98}{99}-5.\dfrac{8}{99}\)
\(C=\dfrac{196}{99}-\dfrac{40}{99}=\dfrac{52}{33}\)