Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(x^2+4xy+4y^2\right)+\left(y^2+8y+16\right)+16\\ P=\left(x+2y\right)^2+\left(y+4\right)^2+16\ge16\\ P_{min}=16\Leftrightarrow\left\{{}\begin{matrix}x=-2y=8\\y=-4\end{matrix}\right.\)
Lời giải:
Điều kiện: $x\neq 0; -1$
$\frac{x+3}{x+1}-2=\frac{1-x}{x}$
$1+\frac{2}{x+1}-2=\frac{1}{x}-1$
$\frac{2}{x+1}-1=\frac{1}{x}-1$
$\frac{2}{x+1}=\frac{1}{x}$
$\Rightarrow 2x=x+1$
$\Leftrightarrow x=1$ (thỏa mãn)
\(\left(x^2-1\right)\left(2x+3\right)=\left(x^2-1\right)\left(3x+2\right)\)
\(\Leftrightarrow\left(x^2-1\right)\left(2x+3\right)-\left(x^2-1\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(2x+3-3x-2\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(-x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy....
=> ( x2 -1 )( 2x +3) - ( x2 - 1)( 3x +2 ) =0
=> (x2 - 1). ( 2x +3 - 3x - 2) =0
=> ( x2- 1)( 1-x) = 0
=> x2 - 1 =0 hoặc 1 - x =0
=> x= 1
Xét tam giác ABC vuông cân có:
\(BC^2=AB^2+AC^2=2AB^2=200\Rightarrow BC=10\sqrt{2}\)(cm)
P△ABC=AB+AC+BC=10.2+10=30(cm)
S△ABC=\(\dfrac{1}{2}AB.AC=\dfrac{1}{2}.10.10=50\left(cm^2\right)\)
Cho mình sửa lại: PΔABC=AB+AC+BC=\(10.2+10\sqrt{2}=20+10\sqrt{2}\left(cm\right)\)
dễ thấy 1 số chính phương chia hết cho 4 hoặc chia 4 dư 1
TH1: 2n−15⋮42n−15⋮4 Từ đây suy ra 2n+1⋮42n+1⋮4 ( vô lý )
Th2: 2n−15−1⋮42n−15−1⋮4 Từ đây suy ra 2n⋮42n⋮4⇒n⩾4
f(x) = x4 - 9x3 + 21x2 + ax + b
g(x) = x2 - x - 2
Ta có f(x) bậc 4 ; g(x) bậc 2
=> Thương là một đa thức bậc 2
Gọi đa thức thương đó là h(x) = x2 + cx + d
Ta có f(x) chia hết cho g(x)
<=> x4 - 9x3 + 21x2 + ax + b = ( x2 - x - 2 )( x2 + cx + d )
<=> x4 - 9x3 + 21x2 + ax + b = x4 + cx3 + dx2 - x3 - cx2 - dx - 2x2 - 2cx - 2d
<=> x4 - 9x3 + 21x2 + ax + b = x4 + ( c - 1 )x3 + ( d - c - 2 )x2 + ( -d - 2c )x - 2d
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}c-1=-9\\d-c-2=21\\-d-2c=a\end{cases}};-2d=b\)
\(\Rightarrow\hept{\begin{cases}c=-8\\d=15\\a=1\end{cases}};b=-30\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=-30\end{cases}}\)
Vậy ...
Đề bài sai: phản ví dụ với \(x=0;y=z=\frac{1}{2}\)
\(\Rightarrow16.\frac{1}{2}.\frac{1}{2}\le\frac{1}{2}+\frac{1}{2}\Rightarrow4\le1\) (vô lý)
\(VP=\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2=VT\left(đpcm\right)\)
thx :)