K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

20052006-20052005

=20052005(2005-1)

=20052005.2004 chia hết cho 2004

Vậy....

Ủng hộ mk nha

28 tháng 2 2016

2005^2006 - 2005^2005

= 2005^2005 . 2005 - 2005^2005

= 2005^2005 . (2005 - 1)

= 2005^2005 . 2004

Chia hết cho 2004 

17 tháng 7 2016

102017-1=100...000 (2011 c/s 0) -1=99....999 (2010 c/s 9)=9.111...111(2010 c/s 1) chia hết cho 9 

Vậy 102017-1 chia hết cho 9 (đpcm)

AH
Akai Haruma
Giáo viên
29 tháng 1 2022

Bài 4:

$A+2=1+2+2^2+2^3+...+2^{11}$

$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$

$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$

$=(1+2)(1+2^2+....+2^{10})$

$=3(1+2^2+...+2^{10})\vdots 3$

Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$

AH
Akai Haruma
Giáo viên
29 tháng 1 2022

Bài 5:

$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ

$\Rightarrow n(n+1)$ chẵn 

$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh) 

 

16 tháng 3 2016

Vì p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3

=> p^2 chia 3 dư 1

=> p62-1 chia hết cho 3

ĐPCM

ai tk mik mik lại (nhớ thông báo cho mik để mik nha)

10 tháng 12 2017

ta có: abcabc=abcx1000+abcx1=abcx(1000+1)=abcx1001=mà 1001 chia hết cho 11=>abcabc sẽ chia hết cho 11

Ta lại có: 1001 chia hết cho 7=>abcabc sẽ chia hết cho 7

9 tháng 7 2016

Ta có : \(n\left(n^2+1\right)\left(n^2+4\right)=n\left(n^2-4+5\right)\left(n^2-1+5\right)=\left[n\left(n^2-4\right)+5n\right]\left[\left(n^2-1\right)+5\right]=n\left(n^2-4\right)\left(n^2-1\right)+5n\left(n^2-4\right)+5n\left(n^2+4\right)\)

\(=n\left(n^2-4\right)\left(n^2-1\right)+5n\left(n^2-4+n^2+4\right)=\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+10n^3\)

Vì (n-2)(n-1).n.(n+1)(n+2) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 5

\(10n^3\) có chứa thừa số 5 nên chia hết cho 5

Do đó ta có điều phải chứng minh.