Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=4x\left(x+y+z\right)\left(x^2+xz+yx+yz\right)+\left(yz\right)^2\)
\(M=4\left(x^2+xy+zx\right)\left(x^2+yz+zx+xy\right)+\left(yz\right)^2\)
\(M=4\left(x^2+xy+zx\right)\left\{\left(x^2+yz+zx\right)+xy\right\}+\left(yz^2\right)\)
\(M=4\left(x^2+xy+zx\right)^2+4\left(x^2+yz+zx\right)\left(yz\right)+\left(yz\right)^2\) ( hằng đẳng thức )
\(M=\left\{2\left(x^2+xy+zx\right)\right\}^2+2.2\left(x^2+xy+zx\right)\left(yz\right)+\left(yz\right)^2\)
\(M=\left(2\left(x^2+xy+zx\right)+\left(yz\right)\right)^2\)
\(M=\left(2x^2+2xy+zx+yz\right)^2\)
\(M=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=2x\left(x+y+z\right)2\left(x+y\right)\left(x+z\right)+y^2z^2\)
\(=\left(2x^2+2xy+2xz\right)\left(2x^2+2xy+2xz+2yz\right)+y^2z^2\)
Đặt \(2x^2+2xy+2xz+yz=a\)
\(M=\left(a-yz\right)\left(a+yz\right)+y^2z^2\)
\(=a^2-y^2z^2+y^2z^2\)
\(=a^2\)
Mà \(x;y;z\in N\Rightarrow a\in N\)
=> M là số chính phương
b, \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left(x-y\right)^2\left(x-y\right)-\left(y-z\right)^2\left[\left(x-y\right)+\left(z-x\right)\right]+\left(z-x\right)^2\left(z-x\right)\)
\(=\left(x-y\right)^2\left(x-y\right)-\left(y-z\right)^2\left(x-y\right)-\left(y-z\right)^2\left(z-x\right)+\left(z-x\right)^2\left(z-x\right)\)
\(=\left(x-y\right)\left[\left(x-y\right)^2-\left(y-z\right)^2\right]-\left(z-x\right)\left[\left(y-z\right)^2-\left(z-x\right)^2\right]\)
\(=\left(x-y\right)\left(x-y-y+z\right)\left(x-y+y-z\right)-\left(z-x\right)\left(y-z-z+x\right)\left(y-z+z-x\right)\)
\(=\left(x-y\right)\left(x-2y+z\right)\left(x-z\right)-\left(z-x\right)\left(y-2z+x\right)\left(y-x\right)\)
\(=\left(x-y\right)\left(x-2y+z\right)\left(x-z\right)-\left(x-z\right)\left(y-2z+x\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(x-z\right)\left(x-2y+z-y+2z-x\right)\)
\(=\left(x-y\right)\left(x-z\right)\left(3z-3y\right)\)
\(=3\left(x-y\right)\left(x-z\right)\left(z-y\right)\)
c, \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(y-x\right)-y^2z^2\left[\left(y-x\right)-\left(z-x\right)\right]-z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(y-x\right)-y^2z^2\left(y-x\right)+y^2z^2\left(z-x\right)-z^2x^2\left(z-x\right)\)
\(=\left(x^2y^2-y^2z^2\right)\left(y-x\right)+\left(y^2z^2-z^2x^2\right)\left(z-x\right)\)
\(=y^2\left(x-z\right)\left(x+z\right)\left(y-x\right)+z^2\left(y-x\right)\left(x+y\right)\left(z-x\right)\)
\(=y^2\left(x-z\right)\left(x+z\right)\left(y-x\right)-z^2\left(y-x\right)\left(x+y\right)\left(x-z\right)\)
\(=\left(x-z\right)\left(y-x\right)\left[y^2\left(x+z\right)-z^2\left(x+y\right)\right]\)
\(=\left(x-z\right)\left(y-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)
\(=\left(x-z\right)\left(y-x\right)\left[x\left(y^2-z^2\right)+yz\left(y-z\right)\right]\)
\(=\left(x-z\right)\left(y-x\right)\left[x\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\right]\)
\(=\left(x-z\right)\left(y-x\right)\left(y-z\right)\left(xy+xz+yz\right)\)
d, \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xyz-3xy\left(x+y\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
ta có (x+y)(x+2y)(x+3y)(x+4y)+y^4
=(x+y)(x+4y)(x+2y)(x+3y)+y^4
=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4
đặt x^2+5xy=a
<=>A=a(a+2y^2)+y^4
=a^2+2.a.y^2+y^4
=(a+y^2)^2
là scp
Phân tích vế trái ta được: 2(x2 + y2 + z2 − (xy + yz + zx)
Phân tích vế phải ta được: 6(x2 + y2 + z2 − (xy + yz + zx)
Vì VT = VP nên VP - VT=0
→ 4(x2 + y2 + z2 − (xy + yz + zx)) = 0
→2(2 (x2 + y2 + z2 − (xy + yz + zx))) = 0
→2((x − y)2 + (y − z)2 + (z − x)2) = 0
→(x − y)2 + (y − z)2 + (z − x)2 = 0
→(x − y)2 = 0; (y − z)2 = 0; (z − x)2 = 0
→x = y = z
a. \(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(t=x^2+5xy+5y^2\left(t\inℤ\right)\)
\(\Rightarrow A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2=\left(x^2+5xy+5y^2\right)^2\)
Vậy giá trị của A là một số chính phương
Ta có:
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(x+y-2z\right)^2\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=6x^2+6y^2+6z^2-6xy-6yz-6zx\)
\(\Rightarrow4x^2+4y^2+4z^2-4xy-4yz-4zx=0\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Rightarrow x=y=z\)