Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(d=\left(15n+1,30n+1\right)\).
Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).
Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)
Suy ra \(d=1\).
Suy ra đpcm.
a, Gọi ƯCLN(15n+1; 30n+1) là d. Ta có:
15n+1 chia hết cho d => 2(15n+1) chia hết cho d => 30n+2 chia hết cho d
30n+1 chia hết cho d
=> 30n+2-(30n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(15n+1; 30n+1) = 1
=> \(\frac{15n+1}{30n+1}\)tối giản (Đpcm)
Các phần sau tương tự
a) Đặt ( 15n+1 ; 30n+1 )=d
=>15n+1 chia hết cho d =>30n+2 chia hết cho d
30n+2 chia hết cho d
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>15n+1 và 30n+1 nguyên tố cùng nhau
=>\(\frac{15n+1}{30n+1}\) tối giản
b)Đặt ( 2n+3;4n+8)=d
=>2n+3 chia hết cho d=>4n+6 chia hết cho d
4n+8 chia hết cho d
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
=>d= 1 hoặc 2
Mà 2n+3 là số lẻ
=>d khác 2
=>d=1
=>2n+3 và 4n+8 nguyên tố cùng nhau
=>\(\frac{2n+3}{4n+8}\) tối giản
k cho mk nhé
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
a,Gọi d là ƯCLN của tử và mẫu.Ta có
15n+1 chia hết cho d =>30n+2 chia hết cho d
30n+1 chia hết cho d =>30n+1 chia hết cho d
=>(30n+2)-(30n+1) chia hết cho d=1 chia hết cho d=>d=1
Vậy WCLN của phân số đó là 1(đpcm)
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
a) Đặt \(d=\left(15n+1,30n+1\right)\).
Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\)
\(\Rightarrow d=1\).
Suy ra đpcm.
b) Đặt \(d=\left(n^3+3n,n^4+3n^2+1\right)\).
Suy ra \(\hept{\begin{cases}n^3+3n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+3n\right)=1⋮d\)
\(\Rightarrow d=1\).
Suy ra đpcm.
đề bài là 30n+1 thì mới làm được nếu là 30n+1 thì làm như sau
gọi d thuộc ước chung của 15n+1 và 30n+1
suy ra 15n+1 chia hết cho d
30n+1 chia hết cho d
vậy 2.(15n+1) chia hết cho d
30n+1 chia hết cho d
suy ra 30n+2 chia hết cho d
30n+1 chia hết cho d
vậy(30n+2)-(30n+1) chi hết cho d
1 chia hết cho d
vậy d thuộc tập hợp 1 và -1
c/m 15n+1/30n+1 là phân số tối giản
\(\frac{15n+1}{30n+1}\)
Gọi ƯCLN ( 15n + 1 ; 30n + 1 ) = d
Ta có :
15n + 1 \(⋮\)d ; 30n + 1 \(⋮\)d
=> 2 ( 15n + 1 ) \(⋮\)d
=> 30n + 2 \(⋮\)d
=> ( 30n + 2 ) - ( 30n + 1 ) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\){ 1 ; - 1 }
Vậy \(\frac{15n+1}{30n+1}\)là phân số tối giản